Implicit group messaging in peer-to-peer networks

Daniel Cutting, Bjorn Landfeldt
School of Information Technologies
University of Sydney, Australia
{dcutting,bjornl}@it.usyd.edu.au

Abstract

We describe “implicit group messaging”: a form of
many-to-many message delivery that does not require
publishers to enumerate recipients, or recipients to join
explicit groups. Instead, publishers specify the char-
acteristics of intended audiences and the system dy-
namically attempts to deliver messages to all matching
members. We study this type of message delivery in
the context of peer-to-peer metworks, discussing desir-
able features of such a system, and presenting a nowvel
model based on a distributed overlay network and geo-
metric routing protocols.

1 Introduction

The amount of traffic carried by the Internet continues
to increase each year [10, 19] and new technologies are
constantly appearing which enable more people to pro-
duce increasingly specialised content [14, 15, 16, 18].
Already, many channels exist for publishers to reach
interested or relevant consumers including web pages,
email, instant messaging, blogs and podcasts. They
can however be broadly classified into two main ap-
proaches’:

1. messages are sent to explicit lists of recipients (e.g.
mailing lists or instant messaging)

2. messages are posted in publicly accessible formats
where interested people can find them (e.g. web
sites, blogs and message forums).

The first approach is suitable for some applications,
but typically relies on recipients to explicitly subscribe
before they can receive messages. If many such lists
exist, they need to subscribe to many separate systems
in order to receive all of the messages in which they’re
interested. Furthermore, since such lists are subject-
based, they may be interested in only a subset of all

We also discuss a third approach, publish/subscribe messag-
ing, in section 4.

Aaron Quigley

School of Computer Science & Informatics

University College Dublin, Ireland
aquigley@ucd.ie

messages posted. An obnoxious extension of this ex-
plicit list approach is email spam, where a publisher
indiscriminately pushes a message to as many people
as possible in the hope of reaching a few interested or
relevant people?: one reason spam is so irritating is
that practically none of it is interesting to the recipi-
ent.

The second approach is to post messages to public
channels for consumers to find. It is often presumed
that public web pages and posts in message forums are
published for the benefit or consumption of all users of
the Internet but while it is certainly true that anybody
with a browser can visit and read a message forum,
they are typically tailored to a more specific group of
people: perhaps fans of a particular sport or band,
or those with an interest in gardening. This public
channel approach can be used where compiling explicit
lists of recipients is impractical or impossible. There
are some drawbacks however: people must sift through
irrelevant information (scanning through search engine
results, for example); and they must explicitly initiate
the searches (i.e. pull the messages to them) which
means time-sensitive messages may not be discovered
soon enough. Finally, as with the former approach, the
degree of effort on the part of the recipients increases
as the number of publishing sources increases.

We suggest that in situations where the publisher of
a message knows the intended type of recipient (rather
than their explicit names), it is more appropriate to
publish to “implicit groups” of people — groups where
members are not enumerated but are specified by their
characteristics, e.g. “young Australians interested in
football”. This allows messages to be delivered in
a timely fashion and because recipients receive pre-
dominantly relevant messages, reduces the amount of
searching and sifting needed.

To concretise: a physician at a hospital is having
trouble diagnosing a patient with symptoms of hypoxia

2 Although the term spam often refers to junk email, we use it
here in its broader sense of any unsolicited or irrelevant messages
that are pushed to somebody.

and dysphonia that seem to indicate a severe throat
infection and would like to get some assistance from
colleagues with experience of similar cases. Her hos-
pital has an email system she can use to contact her
colleagues around the country, but although she knows
the type of person she needs to talk to, she does not
know precisely who among her colleagues may be able
to help. She must decide whether to contact just a
few or the entire group, and since the situation is rela-
tively urgent she sends an email to everybody. Within
a few hours, she gets a response with the information
she needs to make the correct diagnosis: it is in fact
acute epiglottitis, not laryngitis as she had supposed.
Unfortunately, she also receives many replies berating
her for the irrelevant message. If instead she had been
able to send the message to just the implicit group of
colleagues with experience of the symptoms she had
observed she would not only have saved network re-
sources, but also spared most of the staff from reading
a message of no relevance to them.

This concept of implicit group messaging is useful
in many scenarios: as the Internet enables the pub-
lication of more messages through technologies such
as blogs, podcasts, online photo galleries and massive
multi-player games, implicit group messaging is a po-
tentially useful way of connecting publishers to appro-
priate consumers.

1.1 Problem and hypothesis

Our goal is not to prove that implicit group messaging
is the best strategy for mitigating “information over-
load” in an increasingly prolific society. Rather, we
assume that it has its place in the gamut of possible
approaches, and intend to show that it can be plausibly
achieved. The overarching problem is to demonstrate
that it is possible to deliver discrete messages from pro-
ducers to implicitly specified groups of consumers in an
effective, efficient and robust manner.

This is a broad challenge, encompassing such diverse
fields as networking, information retrieval and user
modeling. We thus constrain the problem: our domain
is peer-to-peer (P2P) systems over connected internet-
works; all producers and consumers are equal peers in
the network; and each peer maintains a set of keywords
describing its characteristics or attributes (such as its
capabilities, services or user’s interests). We are not
concerned with how keywords are actually assigned,
although like many Internet-based phenomena we as-
sume that they will follow a Zipfian distribution [11, 1].
Implicit groups are specified as boolean expressions of
keywords — all peers whose attributes match an ex-
pression are members of that implicit group.

Within this scope, publishing a message to an im-

1. All group members should receive group mes-
sages.

2. Non-members should not receive group messages.

3. The members of an implicit group should be the
exact set of peers that have matching attributes
at the instant the message is published.

4. Group members should receive messages as soon
as they are published.

5. Messages should be “replayable” in the event
that some peers are transiently connected.

6. The overall load on the network should be mini-
mal.

7. No peer should do more work or be more critical
to system operation than any other.

Figure 1. Ideal properties of a P2P implicit
group messaging system.

plicit group becomes a form of multicasting from a
source peer through a network to the subset of peers
with keywords that satisfy the group description speci-
fied by the publisher. Consumers do not explicitly join
groups or subscribe to any particular types of messages.
Any peer must be capable of sending messages to any
implicit group at any time, and the actual membership
of the same implicit group may vary from message to
message as peers join and leave the system or alter their
attributes.

An implicit group messaging system as described
above needs to have certain basic properties, which we
enumerate in figure 1. Any model seeking to address
the problem should satisfy these properties as far as
possible, even if various properties may conflict in some
situations (e.g. it may sometimes be necessary to load
a peer more heavily in order to deliver the message to
more group members). Of course these tradeoffs will
vary for different models, but we consider the delivery
of messages to all members of an implicit group to be
of utmost and overriding importance.

Our contributions are several. We describe the im-
plicit group approach to messaging and provide a net-
work model for achieving it in large P2P networks us-
ing a number of novel concepts: implicitly addressing
a peer based on its attributes and a routing algorithm
based on the geometric clustering of peers in a logi-
cal address space. Our model addresses most of the
properties listed above, with the remainder assigned to
ongoing and future work.

Sections 2 and 3 describe our network model and as-
sociated algorithms and sections 4 and 5 discuss related
work and conclude with future work.

2 Model
2.1 Background

P2P networks are overlay networks that connect Inter-
net hosts to one another for the purposes of sharing
data or delivering messages. They are typically dis-
tributed in that no peer is significantly more impor-
tant than any other, although the degree to which this
holds depends on the type of model: centralised, de-
centralised, unstructured or structured.

The centralised model, which includes systems such
as the original Napster®, relies on well-known cen-
tralised registries. These registries typically index or
cache the content of the peers and process queries on
their behalf for the purposes of uniting peers that can
meet one another’s needs.

Decentralised P2P networks, such as the FastTrack
network?, use a similar approach extended to a two-
level hierarchy of peers (clients and “supernodes”) in
order to scale networks efficiently. Clients usually con-
nect to a single supernode which caches or indexes their
content (akin to a server in the centralised model), and
search queries are handled by flooding between supern-
odes.

The unstructured model, which includes such net-
works as Gnutella®, has no concept of servers or het-
erogeneous peers, but instead connects neighbours ac-
cording to various ad hoc rules. These heuristics can be
as simple as connecting to the first peers encountered,
or as complex as connecting to peers with similar in-
terests or of high degree. Searches for content or peers
in this model are typically flooded from the source to a
certain depth. Some advanced techniques for limiting
or directing these floods have been explored [25, 23, 27],
although these typically only consider the case where
searches are for specific objects (where it is sufficient
to find just one or a few objects matching the search
criteria). This is inappropriate for an implicit group
messaging system, since we need to find and deliver a
message to all peers matching the implicit group crite-
ria.

Structured P2P networks take a very different ap-
proach to connecting neighbours and include such sys-
tems as Tapestry [29] and CAN [21]. Typically they
seek to organise the peers and connections into an ab-
stract, regular topology that allows guarantees of var-
ious properties, such as the maximum hops needed to
reach a particular peer, and bounded search times for
locating an object stored in the network.

3http://www.napster.com
4http://en.wikipedia.org/wiki/FastTrack
Shttp://www.gnutella.com

2.2 Implicit group messaging model

Our model is a distributed, structured overlay network
comprising homogeneous peers. The peers reside at
locations (unrelated to their network or geographical
location) on an abstract d-dimensional Cartesian hy-
percube which wraps around on all edges, thus form-
ing the surface of a d-torus. Each peer is responsible
for a distinct region of the surface and knows how to
contact the peers that border it. Messages are routed
geometrically across the surface between neighbouring
peers.

Recall that each peer maintains a set of attributes
describing their services, capabilities or user’s interests.
Peers use these attributes to calculate their logical ad-
dress on the surface: thus a peer’s location inherently
encodes its attributes. Once a peer has joined the net-
work, it keeps track of its region of the surface, and the
set of neighbours that are adjacent. When it wishes to
publish a message to an implicit group, it calculates the
set of all possible regions of the surface where peers of
that group may reside, using the same address encod-
ing scheme it used to find its own address. It then uses
a geometric routing algorithm which forwards the mes-
sage from neighbour to neighbour, branching as neces-
sary to efficiently reach all target regions.

This structured overlay network model was chosen
since it allows us to satisfy certain of the ideal proper-
ties stated above (numbers correlate to those in figure
1):

1. There is a strong advantage to encoding the at-
tributes of a peer into its address since we can cal-
culate all regions of the surface where members of
any given implicit group reside, meaning all mem-
bers of a group can be found.

2. There is no need for flooding messages and no
need for specialised registry peers which main-
tain mappings from attributes to peer addresses,
since the locations of all group members are al-
ready known and a geometric route can be pre-
determined. Routing a message from its source to
all members will usually incur the cost of routing
through some non-members on the way to mem-
bers however, depending on their locations.

3. Since there are no registries or caches, the mem-
bership of an implicit group changes instantly as
peers connect and disconnect from the network.
However, since peers can join and leave after the
message has been initiated, there is no strong guar-
antee that the set of peers that ultimately receive
a message for an implicit group will be exactly the
set of peers making up the group at the instant of
publication.

4. Messages are forwarded as they are published, so

the time it takes to reach any given peer will de-
pend on how far it is from the source and what
route is taken.

5. The “replayable” message property is not sup-
ported by the current model, but may be ad-
dressed in future work.

6. The minimum possible amount of network load for
an ideal model can be determined by calculating
the Steiner tree of all member peers and the source
peer across the network of Internet routers, ensur-
ing each peer only receives exactly the messages it
needs with no duplication. As with many struc-
tured overlay models, our model will load the net-
work significantly more than this, since messages
will need to traverse several physical network hops
for each overlay hop, possibly through the same
peers. Various techniques for mitigating this are
discussed in section 5.1.

7. Our model is entirely distributed, and no peer in-
herently needs to do significantly more work than
any other. However for any given implicit group,
some peers will need to carry more messages (if
there are “bottlenecks” between the source and
members, for example). Some techniques for re-
ducing this are also considered in section 5.1.

‘We now discuss the model in more detail.

2.3 Addresses and extents

A peer maintains a set of attributes in the form of string
keywords (representing, for example, the services it of-
fers or interests its user has, as entered by the user
or determined by the application running on the peer).
We combine these attributes into a fixed length address
using a Bloom FilterS [3]. An address is not guaran-
teed to be unique within the system as it is possible
for several peers to calculate the same address either
by having the same set of attributes or due to hash-
ing collisions. However, there is no reason why several
peers cannot reside at the same logical address. When
this occurs, the peers with the same address are termed
cohabitants.

Once calculated, a peer’s address must be mapped
in some way to the Cartesian surface. There are many
possible functions for this, but we choose to decompose
the surface with a generalised PR quadtree [20] (figure
2), using the address as an index into the tree struc-
ture. Such structures are commonly used in the spatial

6Bloom Filters are compact representations of sets of objects
which allow membership tests with an adjustable error rate of
false positives, effectively trading precision for reduced storage.
Stored as bit strings, filters can incorporate new objects by hash-
ing them to and setting k of their bit positions. An object can
be tested for membership by hashing it and ensuring all k& bit
positions in the filter have been previously set.

indexing of points, and although other variations ex-
ist, the PR quadtree regularly and equally divides the
space at every level, making it easy to name and cal-
culate the Cartesian boundaries of each division. This
simplifies how each peer stores its regions of the sur-
face and communicates with neighbouring peers. It
also makes certain operations easier, as described be-
low.

The mapping function divides the address into d-
bit segments (padded with Os at the end if necessary)
to form digits of base 2¢. Each digit represents a
progressively deeper index into the d-dimensional PR
quadtree. For example, the address 110011101010
maps to the 2-dimensional quadtree address 303222.
By assigning digit 0 to the top left quadrant of a 2-
dimensional square, 1 to the top right, 2 to the bottom
left and 3 to the bottom right, we can recursively re-
fine the Cartesian location of an address by decompos-
ing each digit in turn to the appropriate sub-quadrant.
Each quadrant or sub-quadrant in the system is termed
an extent of the surface.

For example, the four boxes labeled 10, 11, 12 and
13 in figure 2 are all sub-extents of the extent 1. This
decomposition can continue for as many digits comprise
the address. The figure shows the peer at the quadtree
address 303222 as the small black sub-extent of the
extent labeled 30.

10 11

12 13

20 21 31

303222
>

L]
330 321

22 23. 33

322 323

Figure 2. Extents on a 2-dimensional surface
with their associated quadtree addresses.

This mapping approach can be applied to surfaces of
arbitrary dimensionality without loss of generality. For
instance, the same address 110011101010 maps to the

3-dimensional quadtree address 6352 where each digit
represents one of the eight boxes formed by bisecting a
cube (rather than a square) along each axis.

A peer’s actual address typically occupies a small
extent of the surface, but it is possible to have extents
of any size. We define e; > e5 to mean extent e; covers
extent es (e.g. in figure 2, extent 32 covers extent 321,
among others) and e; ~ ey to mean extents e; and
es are adjacent (i.e. they share at least part of one
edge and do not cover one another, such as extents
321 and 30 in the figure). Ej N Es is the intersection
of two sets of extents, defined as a set of extents that
exactly cover the surface region covered by both F;
and Fs. E16 Fs is the difference of two sets of extents,
defined as a set of extents that exactly cover the surface
region covered by FE; but not covered by FE5. This
differs slightly from an ordinary set difference, since
some extents within F; may be subdivided to arbitrary
depths if a smaller sub-extent needs to be subtracted
from them, resulting in a set containing sub-extents
not explicitly found in F;. For example, referring to
figure 2, {0,2} © {20} = {0, 21, 22, 23}.

We note that although a quadtree address is used
to specify the location of a peer on the surface, there
is no global quadtree data structure that needs to be
traversed or maintained by the peers. The concept is
used primarily to map a peer’s address to Cartesian
coordinates. In particular there is no need for a “root”
node: the model is entirely distributed.

2.4 Peers

A peer p maintains several items of state, including its
IP address (p'?), its set of attributes (p®**") and its
address on the surface (p@d9"). Since the surface will
likely never be entirely populated, peers are respon-
sible for managing not just the extent covering their
address, but also a set of arbitrarily sized extents that
cover the addresses of no other peers (p¢*!). For exam-
ple, in figure 2, the peer at 303222 manages the whole
of the extent 30. Whenever a message needs to be
geometrically routed through an extent on its way to
its destination, it is forwarded to the manager of that
extent.

Depending on how the network evolves as new peers
join, the extents a peer manages may not always be
adjacent (they will however always manage at least an
extent covering their own address). For instance, the
peer at 320320 manages the extents 320, 322, 323 and
31. This particular configuration occurred because the
peers managing extents 30, 33 and 321 all joined the
network after the peer 320320, which initially managed
the entire extent 3.

Figure 3 demonstrates a similar surface integrating

new peers. Initially the entire surface is owned by a
single peer with address 2003.... The next peer to
join is 0213. . ., followed by 0300. .., 0202..., 2231.. .,
3122...,2021..., 2001..., and finally 2013. ...

-
cH.E. N

Figure 3. Stages in the formation of a 2-
dimensional surface as nodes join.

A peer also needs to keep track of the extents and
IP addresses of the peers that border its own extents
(p™" : e — IP) in order to be able to forward mes-
sages. Peers p and q are neighbours if they have at
least one pair of adjacent extents: ie. p ~ q <=
Je ~ €’;e € p°® and €' € ¢°*. In figure 2, the neigh-
bouring extents of the peer 320320 are 23, 30, 321, 33,
13, and since the surface is wrapped on all edges, also
extents 10 and 20.

2.5 Implicit groups and targets

An implicit group is the set of all peers that have at-
tributes matching a target expression, e.g. a peer with
attributes doctor and dysphonia matches the expres-
sion (surgeon|doctor) & dysphonia, though a peer
with only doctor does not.

2.5.1 EXPRESSION LANGUAGE

The expression language allows the formation of tar-
get expressions using logical conjunctive (&) and dis-
junctive () operators to arbitrary complexity. Target
expressions are commutative and associative, so the ex-
pression

(surgeon|doctor) & dysphonia

is logically equivalent to

(surgeon & dysphonia) |
(dysphonia & doctor)

and targets the same set of peers. The formal grammar
for the target expression language is:

expression := factor (“&” factor | “|” factor)*
factor := attribute | “(” expression “)”
attribute := [a-zA-Z]+

At present the target expression is limited to specify-
ing the attributes that need to be declared by a recipi-
ent (i.e. one cannot specify the absence of an attribute,
for example), although this may be addressed in future
work.

2.5.2 MAPPING EXPRESSIONS TO THE SURFACE
The address of a peer is directly related to its at-
tributes, so a target expression can be converted to a
target, a pattern that represents all possible addresses
for peers matching the expression.

The expression is first rewritten as a logically equiva-
lent disjunction of conjunctions. Each disjunctive term
is then used to created a target element by hashing its
keywords to a Bloom Filter in the same way an address
is created. We use this filter as a template to find the
addresses of all matching peers: i.e. the bits that are
set in the target element must be set in the addresses
of all matching peers. However, since any peer that
has a matching address may have attributes in addi-
tion to those in the target, the unset bits in the filter
are considered wildcards, able to match either Os or
1s. For example, the target element 171171 represents
the address permutations 101101, 101111, 111101 and
111111,

A target, T, is simply a set of target elements,
one for each disjunctive term. T is said to match
(<) a peer, p, if p®" is a permutation of at least
one of the target elements: ie. T > p <
Jte € T; te & p®¥ = te, where & is the bitwise
AND operator. Note that due to the use of Bloom
Filters there is a certain probability of false positive
matches.

Given a target, a peer can accurately calculate the
extents on the Cartesian surface that it matches. Any
peers that reside at addresses covered by those extents
are likely (depending on the error rate of the Bloom Fil-
ters) to be members of the implicit group represented
by the target. Furthermore, it is impossible for any
peer that is a member to reside at a location not cov-
ered by these extents. With this knowledge, the peer
can initiate a message that traverses all of the extents,
either by visiting one after another, or branching into a
tree-like structure. Section 3.4 describes our particular
routing algorithm in more detail.

3 Algorithms

Several algorithms are needed to support the system.
The ROUTE algorithm (section 3.1) forwards a mes-
sage towards destination extents on the Cartesian sur-
face and is used to direct messages as part of the join-
ing and multicasting procedures. The JOIN algorithm
(section 3.2) is used when a peer receives a JOIN re-
quest from a new peer and needs to partition its ex-
tents, and the LEAVE algorithm (section 3.3) is ini-
tiated by a peer when it wishes to leave the system.
The CAST algorithm (section 3.4) delivers a multicast
message to all peers matching a target expression.

3.1 ROUTE

The ROUTE algorithm (algorithm 1) forwards a mes-
sage from the current peer towards any of the extents
found in the set of clustered destination extents, C. It
is used to route JOIN requests from bootstrap peers
when new peers join the network (in which case C' con-
tains just a single destination extent — the address of
the new peer), and to forward messages towards target
extents when multicasting a message (section 3.4).

Algorithm 1 The ROUTE forwarding algorithm.
Require: C is a set of destination extents.
Require: Ve € p*;fc € C,e > c Ve > e.

1: Amzn = o0

2: for all ¢c € C do

3. for all (e,IP) € p"*" do
4: if e>¢c V ¢ > e then
5: send(msg, [P)

6: return

7 end if

8: if A(c,e,0) < Apin then
9: Amin — A(C, e, (5)
10: nextIP <« IP

11: end if

12: end for

13: end for

14: send(msg, nextIP)

Various cell-forwarding criteria are possible. We
have implemented a nearest neighbour criterion which
preferentially forwards the message to any neighbour-
ing extent that covers or is covered by a destination ex-
tent (lines 4-7), or failing this, to the neighbour that is
nearest to any of the destinations in terms of Euclidean
distance (lines 8-11). In algorithm 1, the function A
in lines 8 and 9 calculates the Euclidean distance be-
tween two extents on a surface of dimension §. Other
more intelligent schemes are also possible. For exam-
ple, attempting to minimise link load, avoiding known
malicious peers, or passively monitoring the reliability

of neighbours over time in order to bias route selection.

Figure 4 shows how a ROUTE is forwarded across
a populated 2-dimensional surface, beginning from the
left and ending near the middle. At each step, the
peer with the message calculates the distance from each
of its neighbouring extents to the destination and for-
wards the message to the one that is closest.

Figure 4. A ROUTE across a 2-dimensional
surface.

3.2 JOIN

The entire JOIN procedure actually includes several
parts and potentially many peers. To join the network,
a new peer connects to any arbitrary bootstrap peer
that is already a member of the system. The means
of finding a bootstrap peer is not part of the system
model, but lists of potential peers could be published
via a secondary system such as GWebCache’, for ex-
ample.

Once connected, the new peer calculates its address
by hashing its attributes (section 2.3), then uses the
ROUTE algorithm (section 3.1) to forward a JOIN re-
quest to the peer that currently manages that extent,
beginning from the bootstrap peer (which has nothing
more to do with the procedure). Upon receipt of the
JOIN request, the existing peer executes algorithm 2.

First it calculates the extent that can be partitioned
to the new peer by finding its largest extent containing
the new peer’s address, but not its own (lines 1-16). In
the case where the two peers share the same address,
this is the null extent, meaning the new peer will not

"http://www.gnucleus.com/gwebcache/

Algorithm 2 Handling a JOIN request.
Require: msg®" £ pddr and Je € p®t:e > msg

addr

1: {Find the new peer’s extent, newFExt.}

2: remaining «— p**t

3: loop

4: e < remaining.pop

5. if e > msg®" then

6: pext — pe:rt —e

7 if e > p®@" then

8: {divide(e) returns the 2¢ sub-extents of e.}
9: remaining «— remaining U divide(e)
10: pert — peet U divide(e)

11: else

12: newExt — e

13: break

14: end if

15: end if

16: end loop

17: {Tell old neighbours our current extents.}

18: update < Update.new

19: (updateext7updatesendeTIP) — (pewt7pIP)

20: for all nIP € {IP;¥(e,IP) € p""} do

21: send(update, nIP)

22: end for

23: {Inform the new peer of their extent.}

24: ack <+ Ack.new

25: ack®t — {newFExt}

26: ack™” «— {(e,IP) € p"";e ~ newExt} U
{(e,p'"); e € p°™*, e ~ newExt}

27: send(ack, msg®)

28: {Update our list of neighbours.}

2. P {(ex, TP) € p""; e € pF*%, 1 ~ 3)

30: if Je € p**t; e ~ newExt then

31: p™" — p™" 4 (newExt, msg

32: end if

srcIP)

be managing any part of the surface (but will receive
duplicates of CAST messages received by the first peer
at that address). After the partitioned extent has been
calculated the peer informs its neighbours of its up-
dated set of extents (which can change if the previous
part of the algorithm resulted in some extents being
subdivided) in lines 17-22. It then directly acknowl-
edges the new peer’s request to JOIN (lines 23-27),
whereupon the new peer takes its place as manager of
that extent. Finally, the peer updates its neighbour
table to reflect the new configuration (i.e. it prunes
old neighbours which are no longer adjacent, and adds
the new peer if it is adjacent) in lines 28-32. Figure
3 shows a 2-dimensional surface evolving as new peers
join (see section 2.4 for a description of this figure).

3.3 LEAVE
A peer can leave the network gracefully by asking one
or more of its neighbours (or preferably a cohabitant
if one exists) to take ownership of some or all of its
current extents, and informing all neighbours of the
change.

At present, the model does not handle unexpected
disconnections, though this is clearly required for a ro-
bust system. Section 5.1 discusses this in more detail.

3.4 CAST

The CAST algorithm (algorithm 3) multicasts a mes-
sage from a source peer to the implicit group of peers
matching a target expression. The source peer first
converts the expression to a target (section 2.5), and
constructs a CAST packet comprising the payload, tar-
get (msgt®m9¢t) and a list of extents within the system
that have not yet received the message (msgunerplored),
Initially, this is set to the complete list of top-level ex-
tents on the surface, but extents are subdivided and
removed as more of the surface receives the message.
Copies of the message are then sent to one or more
neighbours who in turn deal with the message in the
same way.

Algorithm 3 The CAST forwarding algorithm.

1: if msgte9¢ <1 p then

2 {Inform application of CAST payload.}

3: end if

4: msgunewplored - msgunewplored o) pezt

5. msguneacplored - msgune:cplored N msgtarget_extents
6: if msgunerrlored - () then

7. {C} « cluster(msgunesplored)

8 for all C € {C} do

9

nmsg <— msqg

10: nmsguneacplored —C
11: route(nmsg, C)

12: end for

13: end if

The algorithm analyses a CAST packet and deter-
mines to which neighbours it should be forwarded. A
peer starts by first checking whether the message is in-
tended for itself (i.e. the target matches its attributes)
and if so, delivers the payload to the applications it is
hosting (line 1-3). Next, the set of extents managed
by the peer are removed from msg®"e*Plored gince these
have now been explored (line 4). Line 5 removes from
msgUrerplored a]] extents that do not intersect with the
target such that only foreign extents that intersect with
the target that have not yet been explored remain. The
algorithm terminates if this set is empty since there are
guaranteed to be no other peers that should receive the

CAST (line 6).

The peer then clusters the remaining unexplored ex-
tents using a hierarchical top-down divisive cluster®
(line 7). In order to minimise the number of identical
messages sent along a route, the distance metric used
in the clustering is the angular difference between the
extents as measured from the current peer’s Cartesian
coordinates.

Intuitively, if multiple unexplored extents lie in the
same direction away from the current peer (and hence
have minimal angular differences), then only one mes-
sage needs to be sent in that direction. As the message
gets closer to the extents, the angular differences will
become more marked, and once they exceed a threshold
the message can be cloned and the route can branch as
necessary.

Figure 5. An illustrative 2-dimensional CAST
with ¢ = 1.0. The source is at the top right of
the surface and the targeted region is shown
shaded.

The branch factor, ¢, is used as the threshold for the
clustering, and can thus take a value 0¢ < ¢¢ < 27°.
A low value results in many clusters (which will likely
result in many message replicas traversing the same
overlay and physical links), while a high value results in
few clusters (which may necessitate excessive message
backtracking or path crossing). The optimal value for
¢ likely depends on the nature of the network, though

8 A divisive cluster begins with a single cluster and compares
each pair of elements to find the two which are maximally distant.
If this distance is greater than a threshold, the cluster is recur-
sively subdivided, terminating once no two elements exceeds the
threshold.

validating this is currently left for future work. Once
the clusters have been found, the message is cloned
(line 9) and routed towards them (line 11) using the
ROUTE algorithm (section 3.1). Each cloned message
is given only the unexplored extents for that cluster
(line 10) which, being mutually exclusive, means that
the various branches each explore and terminate in dis-
tinct regions of the surface. To illustrate this, figure 5
shows the path of a CAST message from the top right
corner of the surface to the shaded target extents us-
ing a branch factor of 1.0 (which produces relatively
few branches).

4 Related work

Multicasting is a well-studied problem in networking.
IP multicast? allows hosts to explicitly join a group
and receive all messages sent to the group address. A
spanning tree of all members is constructed that can
be source-rooted in the case of a single producer, or
rooted at a rendezvous point when there are multiple
producers. An advantage of multicasting at this level
in the network stack is that duplicate packets can be
eliminated, optimising the usage of physical network
links. Similar application-level approaches have also
been explored [12, 8], that although unable to offer
network utilisation as optimal as IP multicast have the
advantage of not requiring additional network support.
However, none of these schemes effectively address the
problem of implicit group messaging as they require the
creation and maintenance of a separate multicast group
for each implicit group (which may potentially be used
just once or never) and offer no inherent mechanisms
for discovering the explicit hosts that should partici-
pate.

There have been a number of multicast schemes con-
structed over distributed hash tables, such as Scribe
[6] (based on the Pastry DHT [24]), CAN multicast
[22] over the CAN DHT [21] and Bayeux [30] (on the
Tapestry DHT [29]). Again, these use the notion of ex-
plicit groups: a group is created by a peer and may be
joined by other peers. Any message sent to the group is
delivered to all members of the group. This approach
has the same drawbacks as traditional multicast when
used for implicit group messaging.

The concept of implicit groups has formed a part of
some systems. The PEACH project [4] uses the con-
cept of “implicit organization” in order to communicate
between various components of an interactive museum
guide and Chambel et al [7] describe the use of im-
plicit groups to aid navigation of and retrieval of data
from large distributed “hyperbases”. However these
approaches are limited to their specific application and

Yhttp://www.ietf.org/rfc/rfc3170.txt

are not directly applicable to large distributed P2P net-
works over the Internet.

Publish/subscribe messaging has two variations:
subject-based and content-based. Subject-based sys-
tems such as Tibco Rendezvous'? allow subscribers to
join channels in much the same way as hosts can join
multicast groups to receive all messages sent to the
group. In the content-based variation such as Elvin
[26], subscribers register a subscription with the sys-
tem indicating the type of message they would like to
receive. When a producer publishes a message it is
compared to the set of subscriptions and forwarded to
only those hosts that have registered a matching sub-
scription.

Content-based publish/subscribe (C-BP/S) is con-
ceptually similar to implicit group messaging in that
messages are delivered to a group of recipients based
on a match made at the time of publication. The pri-
mary difference between C-BP/S and implicit group
messaging is by whom the group is specified: in the
case of implicit group messaging, the publisher of the
message selects the type of recipient but in C-BP/S the
consumers select the type of message. These converse
semantics lead to differing expressiveness between the
two approaches and each is suited to different classes
of applications.

C-BP/S is well-suited to applications where con-
sumers know the sorts of messages that will be pub-
lished and need to be able to listen for specific events
without tying themselves to particular publishers: for
example, a GUI component in a distributed applica-
tion can listen for updates to the data model from any
other component and display them to the user as they
occur. In this case, the publisher does not care how the
information is handled or whether a GUI is updated -
it is simply making the information available to compo-
nents that may wish to make use of it. Implicit group
messaging is better suited to applications where pub-
lishers are trying to communicate with a certain class
of consumer. In this case, the consumer has no knowl-
edge of what kind of publishers or messages exist in the
system, but is still able to receive messages of interest.
This is more suitable for use in large many-to-many
communities such as P2P networks.

There have been systems that decentralise content-
based publish/subscribe over wide area networks.
Siena [5] provides an overlay network of event brokers
that allow hosts to subscribe to events generated any-
where in the network. These subscriptions are repli-
cated among the brokers, or combined into “covering
subscriptions”. Thus, a form of multicast tree can be
traversed each time an event is generated, and only de-

Ohttp://www.tibco.com/

livered along branches that contain subscribers. In very
large networks, it is preferable not to have bottlenecks
responsible for routing much of the overall traffic of the
system as they typically require significant investment
in bandwidth and processing power and represent sin-
gle points of failure or targets for attack. As such, a
completely distributed approach is desirable, where ev-
ery participant is equally responsible for routing mes-
sages. Unfortunately, this makes the use of covering
subscriptions far more difficult.

Mirinae [9] is a content-based publish/subscribe sys-
tem that uses a hypercube overlay routing network to
group similar subscriptions. Subscriptions are mapped
to a corner of the hypercube based upon an application
schema, and events are mapped to partial identifiers ac-
cording to the same schema and sent along the edges to
corners that cover it. This scheme works because sub-
scriptions that are semantically close can be made close
in the topology of the hypercube. Since this topology
can be constructed before any events are published,
high routing efficiency can be achieved. However, this
approach is not directly applicable to implicit group
messaging, since the peers forming an implicit group
are potentially different for each message and hence
cannot be intentionally placed near one another ahead
of time.

Interest management in war game simulations and
virtual environments [28, 17] refers to the distribution
of update messages from entities in the environment
to all other entities that need to know about them.
Usually, an entity creates an expression of interest in
events created within a certain virtual distance of it, in
a similar manner to content-based publish/subscribe.
An additional feature of interest management however
is that extrinsic attributes of the publisher of a message
(such as their logical position, or name) can be matched
in addition to the intrinsic attributes of the message.

Khambatti [13] has researched the discovery and
utilisation of interest-based communities in peer-to-
peer networks for directing distributed searches. His
approach connects peers with common interests in an
overlay network, but does not specifically support the
boolean expressions of group attributes necessary for
implicit group messaging.

5 Conclusion

We have described the concept of implicit group mes-
saging, whereby publishers of a message are able to
specify the characteristics of the group of recipients,
rather than explicitly name them. We have identi-
fied seven properties that should be part of an ideal
implicit group messaging model and presented a novel
model that satisfies many of them, particularly the pri-

mary properties of guaranteeing delivery to all implicit
group members while minimising participation of non-
group members, and distributing the responsibilities
for system operation across all nodes. Finally, we have
outlined necessary algorithms for the model.

5.1 Future work

The model presented in section 2, is sufficient and com-
plete when peers are reliably connected and functioning
after they JOIN. For more realistic conditions however,
the existing algorithms are somewhat brittle, and do
not handle unexpected disconnection of peers. We ex-
pect that a similar approach to that used in the CAN
DHT [21] will be applicable for remedying this. Addi-
tionally, the CAST algorithm will need to be modified
to either route around holes in the network caused by
disconnected nodes, or automatically repair such holes
as they are encountered. Closely related to this is the
need to improve the handling of simultaneous JOIN
requests.

The most pressing work however is to evaluate the
overlay network model over a realistic physical net-
work in order to evaluate the fundamental properties
of the approach. We have implemented a simulator in
OMNeT++!"" using hierarchical internetwork topolo-
gies as produced by the BRITE'? topology generator
and are currently comparing the model to several al-
ternative approaches using metrics that correspond to
the ideal properties in figure 1. Once this fundamental
simulation is complete, we intend to experiment with
altering model variables such as the attribute distribu-
tion over peers and the dimensionality of the surface.

Some of the ideal properties (figure 1) are not ade-
quately supported by the current model, particularly
the “replayable” message (5) and fairly distributed
workload (7) properties. Property 5 can be imple-
mented by having peers cache messages they receive for
a short time. A new peer can ask for copies of these by
CASTing a request to peers sharing their attributes.
Property 7 is less than ideally supported in the current
model, since the order in which peers JOINs the net-
work in part determines which extents a peer manages
and it is possible for older peers to be managing large
disjoint extents of the surface. This leads to unfair
loading of these peers, since more paths over the sur-
face are likely to pass through them. The problem can
be mitigated by having the peers LEAVE the network,
and then reJOIN, similarly to how Mirinae [9] rebal-
ances its peers. By LEAVEing the network, the peers
hand off their extents to each neighbour most suited,
and by reJOINing they will be assigned just the single

Hhttp://www.omnetpp.org/
2http://www.cs.bu.edu/brite/

extent covering their address, thus spreading their old
extents among their neighbours. It is important that
this “reshuffling” does not occur too often as there is
a small, but not insignificant cost for LEAVEing and
JOINing.

Some extensions to the model are also planned, in-
cluding random shortcuts through the surface between
peers to reduce routing cost. These can be inserted
when peers join the network at no extra cost by link-
ing back to one of the peers encountered on the initial
ROUTE from the bootstrap peer. These random links
offer the potential to greatly reduce the diameter of the
network without sacrificing much additional storage or
communication overhead.

We suspect that the base model presented in this pa-
per will suffer significant latency when measured over a
physical network since the overlay address of a peer by
its nature cannot correspond particularly well to the
underlying network. However, by prefixing addresses
with several bits, we may be able to place peers on
the surface with some approximation to the underly-
ing network, while still retaining the other bits for at-
tribute matching. This technique may reduce the num-
ber of physical network hops a peer typically covers
when traversing an overlay hop.

There are some privacy and security implications
with a system such as this. Since groups are implicit
and consumers do not explicitly request messages, the
system is arguably open to abuse by malicious message
producers: for instance spammers looking to send large
amounts of advertising material. It can be countered
however that such a system allows advertisements to be
far more targeted, thereby benefitting both producers
and consumers. If spammers were to abuse the system
by directing messages to very large implicit groups or
all peers, spam filters could be installed at the client
peers. Combatting spam within the network itself may
also be possible: peers asked to route a very generally
CAST message may choose to silently drop it.

Similar to this problem is the ability of the system
to cope with malicious peers (peers that seek to disrupt
the system by not forwarding messages, or forwarding
them incorrectly). These problems can be somewhat
mitigated by using different values of the branch fac-
tor, ¢, for CASTing messages (thereby taking different
routes to recipient peers), or introducing some amount
of randomness or redundancy in the routing decisions.

Future possible extensions of the general implicit
group messaging concept may include the combina-
tion of the core overlay network with mobile fringe
nodes connecting either through wireless access points
directly or with mobile ad hoc networks [2]. Some in-
teresting applications are conceivable, for example, the

delivery of interesting new music to people jogging with
portable, wireless music devices, and connecting doc-
tors around a hospital to implicit groups of their col-
leagues via wireless PDAs.

The model and approach may also have some appli-
cability to information retrieval problems. By rout-
ing queries to implicit groups in large decentralised
databases or search engines, more accurate and precise
results may be achievable.

Acknowledgment

The authors would like to acknowledge the ongoing
support of the Smart Internet CRC and the residents of
G61b at the University of Sydney, particularly Adam
Hudson, for many valuable discussions.

References

[1] L. A. Adamic and B. A. Huberman. Zipfs law and the
internet. Glottometrics, 3:143-150, 2002.

[2] 1. F. Akyildiz and X. Wang. A survey on wireless
mesh networks. Communications Magazine, IEEE,
43(9):523-S30, 2005.

[3] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422-426,
1970.

[4] P. Busetta, M. Merzi, S. Rossi, and M. Zan-

Group communication for real-time
role coordination and ambient intelligence.
http://citeseer.ist.psu.edu/busetta03group.html,
2003.

[5] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. De-
sign and evaluation of a wide-area event notification
service. ACM Trans. Comput. Syst., 19(3):332-383,
2001.

[6] M. Castro, P. Druschel, A. Kermarrec, and A. Row-
stron. SCRIBE: A large-scale and decentralized
application-level multicast infrastructure. IEEE Jour-
nal on Selected Areas in communications (JSAC),
20(8), October 2002.

[7] T. Chambel, C. Moreno, N. Guimaraes, and P. An-
tunes. Concepts and Architecture for Loosely Cou-
pled Integration of Hyperbases, volume 3 of Broadcast
Technical Report Series, ISSN: 1350-2042, chapter 4.
Broadcast Secretariat, Department of Computing Sci-
ence, University of Newcastle-upon-Tyne, UK, 1994.

[8] Y. Chawathe, S. McCanne, and E. Brewer.
An architecture for internet content dis-
tribution as an infrastructure service.

canaro.

http://citeseer.ist.psu.edu/chawathe00Oarchitecture.html,

February 2000.

[9] Y. Choi and D. Park. Mirinae: A peer-to-peer
overlay network for large-scale content-based pub-
lish /subscribe systems. In NOSSDAV ’05: Proceedings
of the international workshop on Network and operat-
ing systems support for digital audio and video, pages
105-110, New York, NY, USA, 2005. ACM Press.

[10]

[13]

[14]

[16]

[17]

18]

[19]

[20]

21]

K. G. Coffman and A. M. Odlyzko. Internet growth: is
there a ”Moore’s law” for data traffic?, volume Hand-
book of massive data sets, pages 47-93. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2002. ISBN:
1-4020-0489-3.

S. Golder and B. A. Huberman. The structure of col-
laborative tagging systems. Online at Information Dy-
namics Laboratory, HP Labs, August 2005. To appear
in Journal of Information Science (2006).

Y. hua Chu, S. G. Rao, and H. Zhang. A case for end
system multicast (keynote address). In SIGMETRICS
’00: Proceedings of the 2000 ACM SIGMETRICS in-
ternational conference on Measurement and modeling
of computer systems, pages 1-12, New York, NY, USA,
2000. ACM Press.

M. Khambatti. Peer-to-peer communities: architec-
ture, information and trust management. PhD thesis,
Arizona State University, December 2003.

R. Kumar, J. Novak, P. Raghavan, and A. Tomkins.
On the bursty evolution of blogspace. In WWW ’03:
Proceedings of the 12th international conference on
World Wide Web, pages 568-576, New York, NY,
USA, 2003. ACM Press.

M. Light and M. T. Maybury. Personalized multime-
dia information access. Communications of the ACM,
45(5):54-59, May 2002.

C. Lindahl and E. Blount. Weblogs: simplifying
web publishing. Computer, 36(11):114-116, Novem-
ber 2003.

K. L. Morse. Interest management in large-scale dis-
tributed simulations. Technical Report ICS-TR-96-27,
Department of Information & Computer Science, Uni-
versity of California, Irvine, 1996.

B. A. Nardi, D. J. Schiano, and M. Gumbrecht. Blog-
ging as social activity, or, would you let 900 million
people read your diary? In CSCW ’04: Proceedings of
the 2004 ACM conference on Computer supported co-
operative work, pages 222—231, New York, NY, USA,
2004. ACM Press.

Netcraft. July 2005 web server survey.
http://news.netcraft.com/archives/2005/07/01/
july_2005_web_server_survey.html, July 2005.

J. A. Orenstein. Multidimensional tries used for as-
sociative searching. Inf. Process. Lett., 14(4):150-157,
1982.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. In
SIGCOMM’01, San Diego, California, USA, Berkeley,
CA, August 2001. ACM.

22]

(23]

24]

[25]

[26]

27]

28]

29]

(30]

S. Ratnasamy, M. Handley, R. M. Karp, and
S. Shenker. Application-level multicast using content-
addressable networks. In NGC ’01: Proceedings of
the Third International COST264 Workshop on Net-
worked Group Communication, pages 14-29, London,
UK, 2001. Springer-Verlag.

S. C. Rhea and J. Kubiatowicz. Probabilistic location

and routing. In Proceedings of INFOCOM 2002, 2002.
A. Rowstron and P. Druschel. Pastry: Scalable, de-

centralized object location, and routing for large-scale
peer-to-peer systems. In IFIP/ACM International
Conference on Distributed Systems Platforms (Middle-
ware), pages 329-350, 2001.

N. Sarshar, P. O. Boykin, and V. P. Roychowdhury.
Percolation search in power law networks: Making
unstructured peer-to-peer networks scalable. In 4th
International Conference on Peer-to-Peer Computing
(P2P 2004), Zurich, Switzerland, pages 2-9. IEEE
Computer Society, August 2004.

B. Segall and D. Arnold. Elvin has left the building:
A publish/subscribe notification service with quench-
ing. In Proceedings AUUGY7, Brisbane, Australia,
September 1997. Distributed Systems Technology Cen-
tre, University of Queensland, Australia, September
1997.

B. Yang and H. Garcia-Molina. Efficient search in
peer-to-peer networks. In Proceedings of the 22nd In-
ternational Conference on Distributed Computing Sys-
tems, July 2002.

A. P. Yuand S. T. Vuong. Mopar: a mobile peer-to-
peer overlay architecture for interest management of
massively multiplayer online games. In NOSSDAV ’05:
Proceedings of the international workshop on Network
and operating systems support for digital audio and
video, pages 99-104, New York, NY, USA, 2005. ACM
Press.

B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea,
A. D. Joseph, and J. Kubiatowicz. Tapestry: A
resilient global-scale overlay for service deployment.
IEEE Journal on Selected Areas in Communications,
22(1,):41-53, 2004.

S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz,
and J. D. Kubiatowicz. Bayeux: an architecture for
scalable and fault-tolerant wide-area data dissemina-
tion. In NOSSDAV ’01: Proceedings of the 11th inter-
national workshop on Network and operating systems
support for digital audio and video, pages 11-20, New
York, NY, USA, 2001. ACM Press.

