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Abstract

We propose a novel communication paradigm for ad
hoc network middleware called Context-based Messag-
ing and provide evaluation of a simple prototype im-
plementation. The paradigm allows nodes in an ad hoc
network to send messages to multiple recipients based
on their contextual situation. Unlike protocols which
require the sender to specify the names of recipients,
or content-based approaches which allow recipients to
subscribe to messages based on the message content,
our context-based approach allows the source to specify
the necessary contextual situation for a node to receive
the message. In our prototype implementation, called
FlavourCast, the contextual situation of a node is mod-
eled as a set of symbolic attributes which are matched
to the attributes specified in the message.

FlavourCast comprises two interacting though inde-
pendent algorithms. The first uses the metaphor of a
landscape to construct a topographical map of the net-
work where clusters of nodes with similar attributes are
represented by minima. The second delivers Flavour-
Cast messages from a single source to a number of tar-
gets by finding these minima.

Through simulation, we compare FlavourCast to
three alternative approaches: flooding, shortest-path
multicast and directed random walk. We analyse the
results with a variety of metrics and show FlavourCast
to be more efficient than both flooding and directed ran-
dom walk, and comparable to shortest-path multicast.

1. Introduction

Continued improvements in the effectiveness and ef-
ficiency of both wireless ad hoc networking and mobile
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computing devices can support the realisation of what
we term massively multiperson impromptu information
spaces (MMIIS). Such spaces are overlaid on specific lo-
cations (shopping centers, boats, stadiums) or partic-
ular events (concerts, cricket matches, football games)
where large numbers of people (in excess of 1000) con-
gregate. With large numbers of people carrying mobile
devices with suitable wireless communication capabili-
ties, it is conceivable that wireless ad hoc networks can
be spontaneously formed without explicit user configu-
ration. Unlike their fixed wireline system counterparts,
such networks are particularly problematic for running
distributed applications due to their unreliable and un-
predictable behaviour. Broadly speaking, our research
focuses on building information spaces that offer sup-
port for inter- and intra-application coordination in ad
hoc networks.

A central tenet for these information spaces is that
they do not rely on the provision of a fixed infras-
tructure. Analogous to the Internet itself, information
spaces are not under the control of a single authority
but instead are self-forming and self-coordinating. In
such dynamic environments, the mobile computing de-
vices act as peers and route information through an ad
hoc network in a multi-hop manner. Clearly, a decen-
tralised approach is required due to a combination of
problems including device mobility, device constraints
and intermittent connectivity.

MMIIS is a form of middleware; software that me-
diates data-sharing and application coordination be-
tween heterogeneous systems. By managing the inter-
action between disparate platforms and applications,
middleware offers a degree of interoperability by ab-
stracting the differences in databases, operating sys-
tems, hardware systems and network transport pro-
tocols. Commonly referred to as application “glue”,
middleware is distinct from an application’s import or
export functions. An example of an established middle-
ware system is the Object Management Group’s Com-



mon Object Request Broker Architecture (CORBA)
[16]. Examples of lightweight middleware systems more
appropriate to ad hoc networking environments include
tuple spaces (LIME [10] and Limbo [3]) and publish-
subscribe systems (Elvin [12] and STEAM [9]).

While traditional approaches to the development of
middleware for MMIIS are possible, we instead take a
“context-aware” approach to the dissemination of data.
Context-aware computing attempts to take the current
context of the human activity into account when inter-
acting with the users of the system. “Context” can also
include information from the sensed environment and
computational environment that can be used to alter
an application’s behavior.

“Context is any information that can be used
to characterise the situation of an entity. An
entity is a person, place, or object that is con-
sidered relevant to the interaction between a
user and an application, including the user
and application themselves” [1].

Context includes, though is not limited to, spa-
tial information (location, speed), identity (users and
others in vicinity), user models (profile, preferences),
temporal (time of day or year), environmental (noise,
light), social (meeting, party), resources (printers, fax,
wireless access), computing (network bandwidth, lo-
gin), physiological (hearing, heart rate), activity (su-
pervision, interview), schedules and agendas.

The primary function of our MMIIS is to allow appli-
cations and devices to interact with one another with-
out explicitly knowing the names of other devices or
the services they make available. Since such networks
are very large and spontaneously formed, it can be im-
practical to discover services and name devices at the
application level. Realising that large ad hoc networks
are likely to cover significant geographical regions and
comprise devices that are very diverse both in capabil-
ity and contextual situation, we hypothesise that ad-
dressing devices by their contextual situation, includ-
ing available services, current status and location, etc.,
will open a range of new scaleable applications not cur-
rently feasible for MMIIS.

Motivating scenarios where MMIIS are suitable in-
clude:

e A military battlefield where fixed infrastructure is
typically unavailable. There are potentially many
geographic clusters for certain types of context,
such as groups of tanks under attack. Such mid-
dleware could be useful for delivering contextually
appropriate traffic to such groups.

e A sports stadium has low mobility of devices,
many inherent clusters (such as groups of team

supporters, expensive versus cheap seats, etc.)
and would provide a dense ad hoc network of de-
vices. Applications in such a scenario include mes-
saging social groups based on common interests,
and requesting photographs of the action from spe-
cific areas of the stadium.

e Fighting a forest fire could be aided with an ad hoc
network formed by the fire trucks and firefighters
along fire fronts. Relevant context could include
fire hotspots, trucks running low on water, etc.

1.1. Context-based Messaging

We propose a communication paradigm for a MMIIS
called Context-based Messaging, which allows mes-
sages to be directed to appropriate nodes in the net-
work without the sender explicitly needing to find or
address the recipients. The aim is to address messages
not by the names of the recipients, or the content of
the message, but by the context of the recipient nodes
(the targets). This paper describes the implementation
and evaluation of a prototype of this paradigm, called
FlavourCast. It is assumed that the message does not
necessarily need to reach all targets, just “enough”,
and at a cost far lower than exhaustively flooding the
entire network or maintaining global routing table in-
formation as with proactive routing protocols.

FlavourCast uses a divide-and-conquer approach,
employing two independent algorithms: a topography
algorithm, which generates a “height map” over the
network based on topological clusters of contextually
similar peers, and a delivery algorithm, which deliv-
ers the FlavourCast messages from a source peer to as
many target peers as possible.

The rest of this paper is organized as follows. Sec-
tion 2 describes our model, topography and delivery al-
gorithms. Section 3 outlines the metrics, comparative
algorithms and the simulation environment used in our
experiments and section 3.1 presents and discusses the
results. Related work is discussed and contrasted with
our approach in section 4. Finally section 5 concludes
the paper and discusses future work.

2. Model

The underlying concept of Context-based Messag-
ing is to push messages to nodes in the network
that match specified contextual conditions without the
source needing to know their names or locations. For
example, it may be desirable to send messages to nodes
in a sensor network with a temperature above forty de-
grees or it could be useful to send messages to people



in a sporting stadium who support a particular team.
One might imagine that this could even be extended
to peer-to-peer (P2P) networks where the types of files
peers have to offer becomes the relevant contextual in-
formation. Finding files would then be a matter of
sending a context-based message to such peers.
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Figure 1. A stadium could host wireless ad
hoc networks on the order of tens of thou-
sands of nodes. The Sydney Cricket Ground
(top) divides seating according to price and
various other criteria.

By considering various scenarios of large ad hoc net-
works, it is apparent that there are inherent clusters of
nodes with similar contexts. For example, in a sporting
stadium scenario (figure 1), it is common for support-
ers of the same team to be seated together. Further-
more, various regions of seating may be classified as
“Gold” which might lead one to assume that the sup-
porters in such regions are more affluent than those in
other regions, or are more fanatical about the sport:

both potentially relevant pieces of contextual informa-
tion. Similarly, environmental events in sensor net-
works such as forest fires, will produce clustered high
temperature readings in sensors deployed nearby. This
premise of inherent contextual clustering is important
to our model of Context-based Messaging, as it means
that single messages can be routed in the directions of
large numbers of target nodes before dispersing upon
reaching the cluster.

Our investigation of Context-based Messaging has
led us to develop a simplified prototype called Flavour-
Cast. In this model, contextual information is modeled
as attributes that are applied to some nodes. In par-
ticular we concentrate on a single attribute, RED, that
is applied to clusters of nodes in a network. Sending
a Context-based Message is thus a case of sending a
message to as many RED nodes in the network as pos-
sible. The goal of FlavourCast can be summed up as
maximising the number of RED nodes reached while
minimising the number of transmissions.

FlavourCast comprises two independent though in-
teracting algorithms. The first is based purely on local
interaction of nodes and is essentially a network cellu-
lar automata. This algorithm uses the metaphor of a
landscape to construct a topographical map of the net-
work where clusters of nodes with similar properties
are represented as valleys'. As the distance (in terms
of hops) increases from the clusters, the height rises.

The second algorithm delivers FlavourCast messages
from a single source node to a number of target nodes
by attempting to find minima in the topography gen-
erated by the first algorithm. We discuss these algo-
rithms in more detail below.

2.1. Topography algorithm

The FlavourCast topography algorithm is based on
network cellular automata (CA). A cellular automata
is a system based on local interactions of “cells” accord-
ing to a simple set of rules which can result in complex
emergent patterns. Often, these systems are arranged
as regular grids such that each cell has four or eight
neighbours. In a network CA however, cells are nodes
in a graph and nodes that share an edge are consid-
ered neighbours. In the case of a wireless network, the
wireless devices are considered the cells, and the de-
vices within broadcast range are considered the cell’s
neighbours.

A typical CA has a concept of an universal clock
and generations of cells. Each generation is a snapshot

1We distinguish the terms topology, as meaning the particular
node connections in the network (i.e. the graph of nodes), and
topography, referring to the abstract height map generated by the
FlavourCast algorithms with regards to a particular attribute.



of the system as a whole, and moving from one genera-
tion to the next is accomplished by applying the rules
to each cell in the current generation and updating its
state. This synchronous approach is not readily appli-
cable in a wireless ad hoc network. It would be difficult
and costly to synchronise the generations across the
whole network, particularly if it comprised hundreds
or thousands of nodes. Thus the CA model we use in
our model is asynchronous. Nodes broadcast beacons
periodically to notify their neighbours of their current
state. When several beacons have been collected from
neighbours, a node can apply the CA rules to modify
its state based on the information in the beacons.

CAs have been used to model natural processes such
as the spread of infections [14] and heat diffusion [8].
In the case of FlavourCast, we wish to model a land-
scape based around the locations of clusters of similar
nodes. Initially, we based our approach on the heat
diffusion CA described in [8] which dictates that the
temperature of the cell at the next step will be the av-
erage of its neighbours in the current step. If the nodes
with the applied attribute begin at a high temperature
and the others begin at a low temperature, this CA
will diffuse the heat throughout the network produc-
ing a topography of hot regions close to the clusters
and cold distant nodes. Of course, the problem with
this approach is that eventually the temperature of the
network as a whole will equalise, leaving no useful to-
pography. One solution to this might be to continually
add heat to the system at the clusters, but this would
cause the temperature of the network to continually
rise and never stabilise, even if the topology of the net-
work were static and reliable. This is a clumsy solution
at best and would result in continuous network traffic
in the form of beacon updates. A better solution would
stabilise the topography when the topology itself was
stable.

Our second approach was to use a metaphor of
springs connecting neighbouring nodes. RED nodes
would tend to pull down on the springs and the oth-
ers would tend to pull up, constrained by the springs.
This would mean that large clusters of RED nodes
would produce valleys in the topography. This ap-
proach worked well. It created topographies that had
deeper regions where more RED nodes were located.
However it took a long time (i.e. many beacons) to
converge to a stable topography and the areas just
a few hops beyond the clusters were essentially flat,
meaning no useful gradient information was available
in more remote parts of the network. This could pos-
sibly be improved with future research, and is an area
we would like to explore more fully.

Our third approach, and the one currently employed

Figure 2. Topography algorithm: if a node has
the RED attribute, it sets its height to 1. Oth-
erwise, it sets its height to be the minimum of
its neighbours plus one.

by FlavourCast, simplifies the rules greatly. If a node
has the RED attribute, it sets its height to one (the
global minimum). Otherwise, it sets its height to the
minimum of its neighbours plus one (figure 2). These
straightforward rules result in gradients that extend
far from clusters into the network, and stabilise very
quickly (usually a node need only set its height once).
The minima in the topography correspond to those
nodes that have the attribute applied, and valley walls
form around them. When two distinct clusters are
nearby, a discontinuity, or ridge, forms at the midpoint.
Figure 3 shows such a generated topography for a grid
network topology fifteen by fifteen nodes in size.

2.2. Delivery algorithm

The delivery algorithm is quite straightforward. At
its simplest, a packet is forwarded to the next hop with
the “lowest” height until it reaches a local minimum
which by definition is an area where clusters of target
nodes reside.

More sophisticated alternatives are possible also. In
particular, the FlavourCast algorithm evaluated in sec-
tion 3 tries not only to find local minima, but traverses
ridges in an attempt to find adjacent or more remote
minima. This algorithm broadly works as follows: a
FlavourCast packet is initially broadcast to all neigh-
bours of the sender. If that neighbour is “lower” than
the sender, the packet tries to continue downwards. If
it is higher however, the packet tries to head upwards.
Each neighbour decides whether to forward the packet



Figure 3. Generated topography for network
topology in figures 5 and 6.

to subsequent neighbours based in part on whether any
next hops satisfy this constraint. Thus some packets
are propagated to lower regions of the network where
clusters of target nodes are to be found and others are
sent over nearby ridges to other minima. Loops are
avoided by each node maintaining a cache of Flavour-
Cast packets it has recently seen. If seen again, such
packets are silently discarded. Additionally, if a node
receives a FlavourCast packet and knows of any imme-
diate neighbours that are targets, it will forward the
packet (regardless of the height of the neighbours). In
this way, FlavourCast packets tend to bifurcate once a
cluster has been reached. The algorithm is presented
in pseudocode in figure 4.

3. Evaluation

The evaluation and results described in this section
are based on the FlavourCast model described in sec-
tion 2. As explained above, the goal of FlavourCast is
to maximise the number of target nodes reached while
minimising the number of transmissions required. To
evaluate how well it achieves this goal, we compared
FlavourCast to three alternative algorithms using a va-
riety of metrics.

Figures 5 and 6 show how the various algorithms
route messages in a sample network. The topography
generated by the FlavourCast algorithm for the sample
network is shown in figure 3. The alternative routing
algorithms we examined were:

e Flood (figure 5). This is the classic flooding
algorithm, where each node simply rebroadcasts

newNeighbours = neighbours — sender.neighbours
— sender
lowerNeighbours = newNeighbours[lower ]

if #newNeighbours[targets] > 0
send (newNeighbours[targets])
else if height >= sender.height
if #lowerNeighbours > 0
send (newNeighbours [lowest |)
else if #newNeighbours > 0
send (newNeighbours [random | )
fi
else if #lowerNeighbours > 0
send (newNeighbours [lowest |)
fi

newNeighbours = neighbours — sender.neighbours
— sender

if #newNeighbours[targets] > 0
send (newNeighbours[targets])
else if #newNeighbours > 0
send (newNeighbours [random])
else
mostNeighbours = neighbours — sender
send (mostNeighbours [random|)
fi

Figure 4. The FlavourCast and DR-walk deliv-
ery algorithms.

each message it receives, unless it has received
it previously. Flooding is included to provide a
“worst case” baseline. Although flooding a mes-
sage throughout the network means a FlavourCast
will reach every target node, it will do so at high
cost.

e SP-multicast (figure 6). Shortest-path multi-
cast finds the shortest route from the source node
to each target. This is included as a “best case”
algorithm. Each target node is guaranteed to re-
ceive the message, and the cost for doing so is close
to minimal. It is suboptimal because there will be
cases when the shortest path from the source to
a particular node could be marginally extended
and amortised into a route for a different node
(thus saving a number of transmissions overall)?.
However SP-multicast gives a fairly close approx-
imation to the ideal case. Our implementation of
SP-multicast uses global knowledge of the network
to calculate the shortest paths; it has not been im-
plemented as a realistic networking protocol as it

2An optimal implementation might use Steiner trees to find
the minimal subgraph connecting all target nodes and the source
node. However. this is a reasonably difficult problem, and it was
felt the SP-multicast would suffice for our purposes.
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is included purely for comparison.

e DR-walk (figure 5). Directed-random walk is
based on the algorithm described in [2] and given
in pseudocode in figure 4. At the beginning of the
simulation, each node beacons to its neighbours
so they are aware of one another’s existence. A
node initiates a FlavourCast by broadcasting to
all of its neighbours. At each hop, a list of the
current neighbours are added to the packet and
forwarded on randomly in such a way as to avoid
the neighbours of the previous hop. In this way,
the packet is generally propagated away from the
source, allowing it to reach distant areas of the
network more quickly.

The metrics used to compare the algorithms were:

e Efficacy. Average percentage of targets reached.
This metric measures how well the algorithm de-
livers the message to all target nodes. Clearly, a
high value is preferable.

e Efficiency. Average dissipated energy per node.
This metric shows how efficient the algorithm is
as a whole. More energy dissipation means the
algorithm is generally less efficient.

e Fairness. Standard deviation of dissipated en-
ergy. If the standard deviation is small, then all
nodes dissipate energy at a similar rate. If large,
then certain nodes are being required to do more
work than others, leading to faster battery failure.

e Latency. Average number of hops from the
source to a target. This metric measures the typi-
cal path length for a FlavourCast. Preferably this
should be a lower value, so as to keep FlavourCasts
timely.

e Overall. Average number of transmissions per
FlavourCast divided by average fraction of targets
reached. This gives an overall indication of how
“good” an algorithm is. A low value means that
the algorithm reaches a relatively high number of
targets for the number of transmissions made.

The simulation environment consisted of a custom
packet-level simulator and analyser written in Java,
and the NAM visualisation tool. We made no attempt
to model the physical, link or MAC layers in detail;
these lower layers were generalised into various mod-
ules that greatly simplified the simulation. In partic-
ular, we assumed the following characteristics for all
simulations:

No mobility. We did not investigate how mobility af-
fected the various algorithms. See section 5 for further

discussion.

2Mbps reliable, no-latency link. We assumed a
2Mbps wireless network interface capable of reliably
transmitting packets between nodes within transmis-
sion range. The length of time taken to transmit
a packet was directly proportional to its size. We
used the power consumption values reported in [11]
as measured in [5]. Transmit uses 1327mW, receive
uses 966.96mW and idle uses 843mW. Beacon packets
for the topography algorithm were always 256 bytes
in length, and FlavourCast packets were always 1024
bytes. Thus at 2Mbps, these packets respectively took
1lms and 4ms to transmit.

Limitless energy. Each node was assumed to have
infinite energy, and would hence always be available.
By assuming limitless energy, we could more easily see
how energy usage varied throughout the network over
a period of time.

1-hop broadcast and unicast. We assumed the
MAC layer provided mechanisms for broadcasting
packets to all immediate neighbours or uniquely speci-
fying the recipient neighbour. We did not rely on glob-
ally unique addresses for each node: all routing was
local.

3.1. Results

We tested the four algorithms across two networks.
The first was a rectangular grid-like network of 600
nodes, forty by twenty nodes in size with four clusters
of RED nodes dispersed along its length totaling 90
nodes (figure 7). Each node had approximately six
to eight neighbours within transmission range. The
simulation ran for five simulated minutes, during which
285 FlavourCasts were initiated from random source
nodes at a rate of one per second beginning at the
fifteenth second. For the FlavourCast algorithm, each
node broadcast one beacon per second for the first fifty
seconds only.
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Figure 7. GRID topology: A grid-like network
with four major clusters.



The second network topology mimicked a stadium
of 1,385 nodes with two regions of expensive seating
totaling about 210 nodes (figure 8). Again, each node
had approximately six to eight neighbours. This simu-
lation also ran for five simulated minutes, though only
260 FlavourCasts were initiated from random source
nodes at a rate of one per second beginning at the for-
tieth second. FlavourCast beacons were broadcast each
second by each node for the first forty seconds only.
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Figure 8. STADIUM topology: A stadium-like
topology featuring two clusters of expensive
seating (based on figure 1).

Figure 9 shows the average percentage of target
nodes reached by each algorithm in each network. As
expected, SP-multicast and Flood both reach all tar-
get nodes. Interestingly, DR-walk performs much bet-
ter in the GRID than the STADIUM. This is because
the diameter of the STADIUM is much greater than
the GRID, meaning the DR-walk has less opportunity
to reach a target node before looping back on itself.
FlavourCast performs better in the STADIUM than
the GRID. This is probably because it more frequently
finds 100% of the targets (since there are only two clus-
ters as compared to four in the GRID).

Figure 10 shows the efficiency of the algorithms in
terms of the average amount of energy dissipated by
each node over the course of each simulation. As ex-
pected, flooding is the least energy efficient. Also as
expected, FlavourCast is marginally less efficient than
SP-multicast, due to its initial beaconing phase to

generate the topography. DR-walk scores marginally
better than SP-multicast in these simulations. This
is because it reaches far fewer target nodes on aver-
age, meaning fewer FlavourCast packets are transmit-
ted, whereas SP-multicast will always transmit enough
packets to reach every target.

Avg. percentage of targets reached (%)
| |

| |

|
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|
| | |
| | |
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| | |
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FlavourCast (STADIUM)
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SP-multicast (STADIUM)

SP-multicast (GRID)
Flood (STADIUM)

Flood (GRID)

Figure 9. Efficacy. Higher values indicate al-
gorithm finds more targets.

Figure 11 indicates the fairness of each algorithm as
defined by the standard deviation of average dissipated
energy per node. A low standard deviation would in-
dicate that all nodes have dissipated similar amounts
of energy, meaning that no node has been used any
more than any other. Obviously since the algorithms
are attempting to reach all target nodes, there is go-
ing to be some amount of unfairness since the target
nodes themselves should be reached more often than
the other nodes. The low score for the DR-walk (STA-
DIUM) is due to the fact that few target nodes were
reached, thus leaving the system balanced. The slightly
higher values for FlavourCast are somewhat expected.
It is likely that packets being delivered according to
a static topography will traverse the same nodes each
time. DR-walk does not have this problem, of course,
as it selects randomly at each hop. The high values
for Flood are counter-intuitive and unexpected. One
would assume that flooding a network would be very
fair (though very expensive) as each node would al-
ways receive and transmit each packet. It is possible
that this is due to a bug in our simulator.

Figure 12 measures the average number of hops from
a source to a target node. Those algorithms that de-
liver to more targets will inevitably have a higher la-
tency, as they will have to travel further to reach more
nodes. In particular, the algorithms that perform well
in the STADIUM have a high latency simply due to
the diameter of the network. Of note is the fact that
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Figure 10. Efficiency. Lower values indicate
more energy efficient algorithms.
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Figure 11. Fairness. Lower values indicate

fairer algorithms.
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Figure 12. Latency. Lower values indicate
fewer hops from source to targets.

FlavourCast has lower latency than DR-walk in the
GRID, though it delivers to more targets.

Finally, figure 13 gives an overall indication of how
good each algorithm is by finding the ratio of the num-
ber of transmissions to the fraction of targets reached.
A low value is better meaning the algorithm delivers
to a relatively large number of targets at low cost.
Not surprisingly, Flood is considered the worst algo-
rithm. Though it always delivers to every target, it
does so at high cost. Conversely, SP-multicast has the
best score as it always delivers to every target at low
cost. According to this metric, FlavourCast performs
better than DR-walk on average in both topologies,
though the difference is more pronounced in STADIUM
where the diameter of the network is greater. Flavour-
Cast also compares favourably to SP-multicast in both
topologies.
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Figure 13. Overall. Lower values indicate

“better” algorithms.

4. Related work

The work related to FlavourCast spans two key ar-
eas within the ad hoc networking paradigm, routing
and middleware. While FlavourCast is a key compo-
nent in an ad hoc middleware it also contains a routing
component.

The simplest ways of routing in an ad hoc network
are flooding and gossiping. Flooding relies on each
node that receives a data packet to broadcast it to its
neighbours. This process continues until the packet ei-
ther reaches its destination or the maximum number of
hops is reached. Gossiping is similar but sends packets
to a randomly selected subset of neighbours instead of
broadcasting to all. While both gossiping and flood-
ing are easy to implement they are quite wasteful and
gossiping offers no guarantees on delivery. As a result



they are seen as the lowest bound in performance of
routing for ad hoc networks. Flooding is used in this
paper as the baseline comparison for this reason.

The goal of routing is to deliver messages to their
intended recipients with the smallest amount of over-
head. This has the dual purpose of conserving power
within the network and extending network longevity.
This focus has given rise to “data-centric” routing pro-
tocols which essentially flatten the networking stack so
that nodes are referred to by the data they produce
(or consume) rather than an address or global identi-
fier. One reason for this approach in sensor networking
is that it is simply infeasible to assign a global identifier
to every node due to the large number of nodes mak-
ing up the network. Typically in data-centric routing
protocols for sensor networks, a sink sends a request
for a certain type of data to a region of the network
and then waits for the data from this region to be re-
turned. FlavourCast can also be considered a data-
centric routing protocol, as it uses meta-data in the
form of attributes to enable routing.

Sensor Protocols for Information via Negotiation
(SPIN) [7] was developed as a novel approach to data-
centric routing in sensor networks. In SPIN, data is
labeled using meta-data. To facilitate the routing of
actual data, meta-data is exchanged among nodes via
a data advertisement scheme, similar to FlavourCast’s
topography generation algorithm. When a node re-
ceives a new piece of data it transmits the associated
meta-data to its neighbours. Interested neighbours can
then request the transmission of the actual data. SPIN
is more efficient than flooding as the problems of redun-
dant information passing, overlapping of sensed data
and resource blindness are solved. However, SPIN of-
fers no guarantees on data delivery as it is possible
that nodes between a source and potentially interested
destinations are disinterested and do not request or for-
ward the data. As meta-data is only broadcast to the
immediate neighbourhood, local interest affects global
delivery. Similarly FlavourCast does not guarantee de-
livery to all targets nodes but this effect is minimised
as the topography at any point in the network will en-
able messages to be propagated in the correct direction
without fear of intermediate nodes choosing not to for-
ward the message.

Directed Diffusion [6] is another proposal for data-
centric routing in sensor networks. Directed Diffusion
uses a data naming scheme to facilitate the diffusion
of data through the network. In Directed Diffusion a
sink broadcasts an interest for a certain type of data.
As the interest propagates away from the sink, interest
gradients are set up along the paths. When a source
for the data is found, it is returned along the gradients.

The sink can then choose to reinforce certain paths by
increasing the gradient along it, or lowering the gra-
dient of other similar paths. This is two-phase pull
diffusion. A variant, called push diffusion, reverses the
roles of sinks and sources. When there is no geographic
routing criterion for pull diffusion, queries are generally
flooded to the entire network. This works well if the
number of queries is low. Push diffusion works well in
the converse case where the number of events is small,
as it is these that are flooded to the network instead of
the queries. The push diffusion model is the most simi-
lar in nature to FlavourCast. The attributes which are
distributed locally during the topography generation
phase of FlavourCast can be seen as queries and the
delivery algorithm which is used to push data to nodes
with specific attributes is the data generated by events
in answer to the queries. However in FlavourCast, this
process is decoupled and distribution of attributes and
generation of topology is localised.

Rumor Routing [2] is a variation on Directed Dif-
fusion. Rumor Routing seeks to decrease the num-
ber of nodes that are queried by routing the queries
to nodes that have observed a particular event, rather
than flooding the entire network. To propagate data
generated in the network, rumor routing uses long-lived
packets called agents. When a node detects an event
and data is created, it generates an agent to disperse
this data. These agents then travel the network so
as to propagate information about the availability of
data to distant nodes, leaving a reverse path to the
event at each node they visit. When a query is gen-
erated for data, the query is propagated in a similar
way away from the sink. If this query happens to in-
tersect a path taken by an agent earlier, it is able to
then follow a route back to the event. FlavourCast is
in some ways similar to Rumor Routing. The deliv-
ery algorithm in FlavourCast behaves in a similar way
to a Rumor Routing agent and Rumor Routing decou-
ples events from queries with independent algorithms.
However instead of creating a reverse route to an event,
FlavourCast simply uses the agent based approach as a
delivery mechanism. By creating semi-static routes to
events in the network, there is the potential that certain
nodes will be unfairly overloaded in Rumor Routing.

RUGGED [4] uses natural gradients in the sensor
network to route messages. These gradients are inher-
ently formed by the environmental effects being sensed
and require no construction phase. This can work well
for certain sorts of contextual information, but is not
applicable to more abstract forms such as user pro-
files. Furthermore, the extent to which this informa-
tion propagates in the network is limited by the en-
vironmental effects being sensed, whereas FlavourCast



can potentially propagate this information further.

Constraint-based routing [13] allows constraints to
be placed on how a message is routed in addition to
objectives the destination must satisfy. To achieve this
functionality an A*-like algorithm (CB-LRTA*) is used
to search for destination nodes by choosing the next
neighbour that best satisfies the specified constraints.
Back propagation is used so that a route can be re-
fined over time. The algorithm allows the sender of a
message to specify the attributes of a node that should
receive the message (the “destination objectives”), as
well as constraints and objectives for constructing the
route to it. At each point, the algorithm tries to
maximise the route objectives and minimise the con-
straints to find the next best hop. Once a node has
been reached that satisfies the destination objectives,
back propagation is used to reinforce the path for fu-
ture messages. This is similar in spirit to FlavourCast,
in that it is the sender of the message that specifies
the type of node that should receive the message with-
out explicitly addressing any particular node. However
CB-LRTA* will cease delivery once it has found any re-
cipient which satisfies the constraints whereas Flavour-
Cast tries to deliver to all such recipients.

Attributed-based routing [15] allows messages to be
sent to nodes that have specified attributes. It is sug-
gested that attribute-based routing allows applications
to easily implement their own specific routing proto-
col, and that the simplicity of attribute-based routing
means it can be enforced at a very low level in the node
architecture. The prototype of FlavourCast presented
here uses attributes to model the context of recipient
nodes. However, we aim to support richer context mod-
els in the future.

Constraint-based Messaging is intended as a com-
munication paradigm for middleware to support
MMIIS. Traditional middleware systems such as
CORBA [16] are not suited to ad hoc networks as they
rely on the availability of central infrastructure such as
naming services. As a result of the limitations of tradi-
tional middleware solutions in an ad hoc network there
has been a movement to develop middleware specif-
ically for ad hoc networks. STEAM (Scalable Timed
Events and Mobility) [9] is presented as an event-based
middleware for mobile computing and specifically for
ad hoc networking. STEAM uses a proximity based al-
gorithm in which the delivery of events is limited to ar-
eas geographically proximal to the sender. As a result
there is no provision for long distance communications
and events are only propagated several hops through
the network. By contrast the algorithms in Flavour-
Cast seek to contact all interested parties regardless of
their distances from the initiating node.

Another approach to middleware for ad hoc net-
works has been tuple spaces. A tuple space is a vir-
tual space housed on nodes in the network where dif-
ferent nodes can enter and retrieve data. LIME [10]
and Limbo [3] are well-known examples of such tuple
space-based middleware for ad hoc networks. Due to
the rigorous semantics of tuple spaces however, such
a scheme is not well-suited to highly mobile or large
multi-hop ad hoc networks.

5. Conclusion and future work

The FlavourCast algorithms described above consti-
tute the first prototype implementation of a more gen-
eral concept called Context-based Messaging. Flavour-
Cast is an unreliable, message-based multicast commu-
nication mechanism where the sender is able to specify
the contextual situation necessary for a node to receive
the message.

This context-centric approach to message delivery
has several benefits in ad hoc networks. In particular,
no globally unique identifiers need to be assigned to
nodes, and no explicit multi-hop routing tables need to
be maintained since all communication is localised to 1-
hop neighbours. Senders need have no knowledge of the
distant nodes that may receive FlavourCast messages
or even the number or general topology of such nodes.
The underlying network layers need only provide the
ability to broadcast a message to all 1-hop neighbours,
and allow such neighbours to be distinguished from one
another. No further infrastructure such as landmark
beacons or location sensors are required.

Being only a prototype, the current FlavourCast
model has several deficiencies that need to be addressed
in future work to support realistic Context-based Mes-
saging.

The topography algorithm currently used generates
the same gradients leading to a cluster independent of
the number of nodes that it comprises. Although this
simplifies the topography algorithm and leads to rapid
convergence of the topography, it does not allow the de-
livery algorithm to make informed decisions on whether
heading towards a cluster is worthwhile (in terms of the
number of targets reached for the number of transmis-
sions made). Other topography algorithms we have
examined do allow such a determination but are slow
to converge. It would be highly desirable to create a
topography algorithm that both converges quickly and
provides useful hints to the delivery algorithm as to the
potential payoff for heading towards a particular clus-
ter, as this would lead to more efficient FlavourCasts.

We have not explicitly considered mobility in our
model for FlavourCast as yet, though this is the cur-



rent focus of our research. The reactive nature of the
delivery algorithm (i.e. building routes to nodes on de-
mand) suggests that it will be reasonably tolerant of
nodes moving or failing. Of more concern is the to-
pography algorithm which is built on the assumption
that the general topology of the network will remain
in place for some time, even if the nodes themselves
are moving. A high beaconing frequency will allow the
topography to stay up to date, but the cost could be
very high. We propose that the beaconing rate should
fall over time when nodes realise they are in stable ar-
eas (by receiving fewer beacons from their neighbours,
and not receiving beacons from new neighbours). If
a node knows it is moving, or receives beacons from
neighbours it did not previously know about, it can
beacon more frequently.

At present, FlavourCast only supports the delivery
of messages to nodes with a single attribute. We are
currently investigating how this can be extended to in-
clude multiple attributes such that messages can be
addressed, for example, as (RED OR HOT) or (NOT
RED AND NOT HOT). A logical language such as
this would permit more complex delivery objectives
and richer applications. We believe such an extension
would be relatively straightforward to implement by
maintaining separate topographies for each attribute.
When choosing the next hop in the delivery algorithm,
these separate topographies could be consulted or jux-
taposed as necessary and weighted according to the
best choice.

The context model currently used is quite limited,
allowing only symbolic attributes to be either applied
to nodes or not. A richer model is needed to permit
realistic applications. One particularly important fac-
tor to consider is that some context is short-lived and
some is long-lived. For example, the current CPU load
of a device in the network is very short-lived and would
be stale by the time it had propagated any distance.
However, the favourite soccer team of the owner of a
device is long-lived and is unlikely to change during the
course of an application. Any model of context that
supplants the existing model must be able to identify
the longevity of contextual information and act accord-

ingly.
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