
Resilient, Unified, Shared Spaces In Ad hoc Networks

Daniel Cutting and Aaron Quigley
School of Information Technologies

University of Sydney
Sydney, NSW 2006, Australia

+61 2 9351 5711
{dcutting,aquigley}@it.usyd.edu.au

ABSTRACT
We introduce a light-weight middleware system based on tu-
ple spaces and an accompanying distribution protocol
(RUSSIAN) for building applications in wireless ad hoc net-
works. The system does not attempt to enforce strict se-
mantics, instead offering “best effort” mechanisms for use
by the applications. By tuning various protocol parameters,
the system attempts to continually adapt these mechanisms
as the contextual environment of the system changes.

1. INTRODUCTION
Wireless ad hoc networks are spontaneously formed by mo-
bile devices with wireless communication capabilities. Un-
like their fixed wireline system counterparts, they are partic-
ularly problematic for running distributed applications due
to their unreliable and unpredictable behaviour. However
their increasing importance as pervasive computing environ-
ments become more practical makes it necessary to consider
how useful applications can be made to run reliably in such
networks.

Although initial attempts to build applications adapted exist-
ing wireline techniques, such as RPC [7], these were found
to be impractical in wireless ad hoc networks since they of-
ten relied on connection-oriented approaches that were un-
able to gracefully cope with frequent device disconnection
and the severe resource limits imposed. Subsequent research
has turned predominantly to middleware systems, and in par-
ticular, the Linda tuple space metaphor [4], which has been
used as the basis for several middleware systems aiming to
support distributed applications in wireless ad hoc networks
[9, 11].

The use of contextual information available in the system
has been used to try to develop more adaptive middleware
systems [3, 8]. It is proposed that by making middleware
systems cater specifically to the current situation of a net-
work, they can more efficiently and reliably service the ap-
plications they support.

2. AIM
Instead of trying to deal with all possible configurations of
pervasive computing environments that mix both mobile de-
vices and fixed infrastructure, we concentrate specifically on
small, localised ad hoc networks comprising only resource-
constrained mobile devices such as PDAs and smart phones.

Even with this limitation, it is possible to think of many dis-
tributed applications that may be desirable for these environ-

ments including file sharing tools, chat rooms, multi-player
games and business utilities. It is worth noting that these
applications may not generally be too demanding in terms
of strict coordination. For example, it is not absolutely es-
sential that every message entered into a chat room be de-
livered to all participants immediately after it is entered (and
in some cases, it is even acceptable for messages to be lost,
etc). Similarly, in non-action multi-player games, it is gener-
ally acceptable for player’s views to be slightly inconsistent,
and if it takes five seconds instead of one second to discover
that a new file is available in a file sharing application, this
does not generally mean the application is useless.

Our overall goal is to support the sharing of high-level data
for such applications in a manner that requires no configura-
tion with an extremely light-weight middleware system with
minimal resource requirements. Unlike some other systems
that attempt to strictly enforce application coordination at
the middleware layer, we feel this should instead be moved
to the applications and supported by “best effort” mecha-
nisms from the middleware.

Also, unlike many other mobile middleware systems, we feel
it is important for the middleware to be truly spatially and
temporally decoupled. To this end, data inserted into the
middleware should be made available as long as possible,
even when the producer of that data is permanently removed
from the system. It is expected that such data resilience will
allow better handling of unexpected disconnection and fail-
ure of devices.

3. APPROACH

3.1 Model
As with other middleware systems designed for such envi-
ronments [3, 9, 11], we use the Linda tuple space metaphor
as the means of enabling communication between applica-
tion components on different devices.

Linda [4] is a coordination language for easily distributing
applications and has been implemented both as an extension
to many languages and as distinct systems. In essence it uses
a global, shared tuple space paradigm and defines three op-
erators for accessing the space. A tuple is a simple, ordered,
record-like data structure of the form< a , b , ...> , and a
tuple space can be thought of as a shared bag (or multiset) of
such tuples. Tuples can be constructed from bothactualand
formal elements, where actuals are literal values, and for-
mals are types. Ananti-tupleor templateis a tuple that can
be used to match against another tuple. Matches are made



when the number of elements of two tuples are equal, all ac-
tual elements are equal and all formal elements match the
type of corresponding actuals. The basic operators in Linda
are:

• OUT(t) places the tuplet into the tuple space.

• IN(t) withdraws a tuple matching the anti-tuplet from the
tuple space. This operator blocks until a match is found.
The returned tuple is guaranteed to be immediately re-
moved from the tuple space and no copies will be given
to any other process.

• READ(t) copies (without withdrawing) a tuple matching
the anti-tuplet from the tuple space. This operator blocks
until a match is found.

In addition to these, EVAL(t) spawns a new process to eval-
uate the elements oft before it is placed into the tuple space.

Since all communication between processes is achieved via
these operators, it is not necessary for any process to know
about the operation, name, or even existence of any other.
This makes the processes anonymous and spatially decou-
pled. Furthermore, since tuples can permanently reside in
tuple space until they are withdrawn with an IN operation,
regardless of whether the process that created them is still
running, the processes are temporally decoupled.

The spatial and temporal decoupling of components and sim-
ple operators afforded by tuple spaces are desirable prop-
erties in wireless ad hoc networks since such networks are
formed from devices that may never have interacted before,
and the membership of the network changes frequently.

However, it is difficult both to ensure correct application ex-
ecution and to maintain the original Linda semantics of a
unified tuple space in situations where devices comprising
the group regularly fail or become disconnected. The fail-
ure or disappearance of a device constituting part of a tuple
space has repercussions at both the application and system
level. For example, if an application has been designed to
rely on a shared “token” tuple that is held by a device at the
time of its failure, there is little the system can do to help the
application recover beyond providing as much context and
information to the application as possible - it is up to the ap-
plication to resolve the issue and move forward (see section
4 for some alternatives). At a lower level however, the sys-
tem must be able to cope with device failures in a graceful
way that does not unnecessarily affect the applications. For
example, the disappearance of a device that is not actively
participating in the application should not cause the applica-
tion to fail. Similarly, the failure of a device that has inserted
some useful data into the tuple space should not make that
data unavailable in general.

Instead of trying to maintain the original Linda semantics
in such circumstances, it may be more appropriate to relax
the model. In order to address the application level issue,
we relax the original Linda operators by adding timeouts
to the blocking operators IN and READ. This prevents any
component from deadlocking in the event of a device failing
and losing an important tuple. In order to aid the applica-
tion in determining why the timeout has occurred, all con-

textual information maintained by the middleware system is
also available to the application.

To reduce system level problems, data resilience is improved
by caching tuples around the network and allowing these to
be returned in cases where the original owner is no longer
part of the system (the precise realisation of this is described
in the following sections). However, by caching tuples, we
introduce the possibility of cache inconsistency, and thus tu-
ple space inconsistency, which is reflected in the relaxed IN
operator described below and discussed further in the fol-
lowing sections. The operators in the relaxed model are thus:

• OUT(t) places the tuplet into the tuple space. It is not
guaranteed that the tuple will be visible by all participants
in the space immediately, though its availability should
improve over time as it becomes cached around the net-
work.

• IN(t) retrieves a tuple matching the anti-tuplet from the
tuple space. This operator blocks until a match is found or
a timeout occurs. Unlike Linda, the tuple will not neces-
sarily be removed from the tuple space immediately and
it may be possible for other devices to retrieve it simul-
taneously, though the system will make a “best effort” to
reduce these risks.

• READ(t) copies a tuple matching the anti-tuplet from the
tuple space. This operator blocks until a match is found
or a timeout occurs. It may also return a stale tuple (one
that has recently been withdrawn from the tuple space but
for which replicas remain). This is acceptable because
any data returned to the application from a READ is out
of date the moment it is received anyway, as the tuple
space could have changed before the application acts on
the information.

Although these modifications may seem to negate the useful-
ness of tuple spaces for coordinating applications, they still
provide simple mechanisms for sharing data between prop-
erly designed application components.

With the tuple space operators thus defined, it is important
to understand how interaction between devices will actually
take place. Although we have so far concentrated on a single
tuple space, the use of multiple tuple spaces is not a new idea
[5]. It is useful for partitioning unrelated sets of tuples and
can improve performance when it is known how the tuple
space will be used. Often, new operators are introduced to
create and destroy tuple spaces but for our model, we simply
assume that tuple spaces are eternal and need not be explic-
itly reified. To access a tuple space, a device simply invokes
its name (a unique identifier of some sort). If multiple de-
vices agree on the same name (perhaps discovered through
some sort of service discovery protocols), they will automat-
ically access the same tuple space.

As a device leaves the proximity of other devices using the
same tuple space, it will take with it a (probably incomplete)
set of cached tuples. From its point of view, this set will then
constitute the whole tuple space. If it should later encounter
other devices using the same space, the tuples will be made
available to those devices (and vice versa). It is thus pos-



sible for a device to automatically act as a physical means
of migrating tuples between different sets of devices. There
is of course the problem of the device modifying the tuple
space and reencountering the initial set of devices, which
have also modified their version of the tuple space. In sit-
uations like this, where there will be cache inconsistency
problems, the system employs mechanisms for converging
the disparate views over time, described more fully in the
following sections.

3.2 Realisation
The problem of physically distributing tuples in the tuple
space over the devices that comprise the network can be
complex.

In wireline situations, it is relatively straightforward to dis-
tribute a tuple space over many machines since several as-
sumptions can be made. In particular, it can usually be as-
sumed that devices will not fail unexpectedly and it can often
be assumed that communication between hosts is quite fast.
There are two immediately apparent, straightforward distri-
bution algorithms when making such assumptions. The first
broadcasts each OUT tuple to all hosts in the system where
it is cached. READ and IN operations are quite cheap since
a complete copy of the tuple space exists on each host. (Of
course, an IN operation also requires a protocol for remov-
ing the copy of the matched tuple from all other hosts.) The
second algorithm is almost the opposite. An OUT opera-
tion stores the tuple locally, but an IN or READ operation
triggers the searching of all hosts for matches. There are
more sophisticated approaches that fall somewhere in be-
tween these extremes. Instead of simply broadcasting OUT
tuples, [1] uses a hash function to determine upon which
hosts to store them. The same hash can be used to return
a list of servers where the tuple could exist when a (partial)
template is given. This dramatically improves performance
when the system comprises many hosts.

However, wireless ad hoc networks have properties quite un-
like their stable, wireline counterparts. Specifically, it is very
common for new devices to join and leave the network unan-
nounced, and the wireless nature of communications means
it is comparatively easy for messages between devices to
go unheard. These drawbacks mean that tuples exclusively
stored on single devices could be lost or made unavailable
for long periods. Although these problems could potentially
be remedied by using the broadcast approach mentioned above,
this would unnecessarily use a large amount of power in a
system where power is at a premium.

Our approach to the problem of distributing tuples is based
on several assumptions:

• In a small, localised wireless ad hoc network, multicast-
ing (or broadcasting) messages is as cheap as unicasting
since all devices are within one hop.

• Since devices can physically come and go at any time,
and hence become frequently disconnected from the net-
work, it is pointless to use “reliable” communication pro-
tocols (i.e. protocols that try to guarantee delivery of mes-
sages via acknowledgments, etc.); devices will need to be
able to cope with unreliable peers anyway.

• The applications to be deployed in wireless ad hoc net-
works will not typically require strict semantics and guar-
antees (since there can be no guarantee that necessary
data or devices will be part of the network anyway).

Linda tuple spaces are inherently spatially and temporally
decoupled. This means that an inserted tuple should no longer
be tied in any way to its producer. Many distributed tuple
spaces have modified this feature, by requiring a tuple be
“owned” by one participant in the system [3, 9, 11]. Since
there is no server in a fully distributed system, this concept
of ownership allows a single device to decide which requests
for a particular tuple should succeed and which should fail.
A drawback of the approach is that the tuple is no longer
truly spatially or temporally decoupled from the system; if
the device that owns the tuple fails or becomes disconnected,
the tuple is no longer available to other devices.

The realisation of our middleware system relies on two main
concepts. Firstly, whenever devices need to communicate,
the messages should be broadcast to all devices so that they
can have a mostly complete impression of the system state.
This is an extremely important point, as it means that all de-
vices are free to respond to any message at any time, and
tuples overheard in transit can be cached to satisfy future re-
quests. Secondly, at any one time a single device should act
as anarbitrator and make rulings in situations as required by
tuple space semantics. The arbitrator is our approach to han-
dling the problems arising from having no concept of own-
ership in the model. The arbitrator can be thought of as tem-
porarily owning tuples when their ownership is in dispute.

IN(t)

tb
ta

Figure 1: The multiple match problem. Which tuple (ta or
tb) should be returned and removed from the tuple space?

The purpose of an arbitrator can be illustrated with some
sample scenarios, shown in figures 1, 2 and 3. Figure 1
shows a device performing an IN operation. The two nearby
devices each hold different tuples that could satisfy the re-
quest. The problem is agreeing on which tuple is returned
and removed from the tuple space. The problem can be
solved by both devices broadcasting their tuple, having the
requester choose one arbitrarily, and broadcast its choice.
Both devices would thus know which tuple had been selected
and whether their tuple was still available to satisfy other re-
quests. In this case, the arbitrary choice is made by the re-
quester itself, but since all messages are heard throughout
the network, any device could have made this decision and



acted as the arbitrator.

IN(t) IN(t)

ta

Figure 2: The “at most one” problem. Which device should
succeed and get the tuple ta?

Figure 2 shows a simpler situation. If a device hears two vir-
tually simultaneous requests that can both be satisfied by its
only tuple, it needs to select a victor. This could be solved
by it arbitrarily choosing a victor and broadcasting the tu-
ple and a message to that effect. However, since this is a
special case, where no other devices happen to have tuples
matching the request, it can be subsumed into the first sce-
nario, outlined above. Since both requesters would hear the
broadcast, and since other replies may have been broadcast
by other devices, it can be the responsibility of the arbitrator
to make the final decision.

IN(t) IN(t)
ta

ta
Figure 3: The cache problem. When cached copies of the
same tuple exist and simultaneous requests are made that
match that tuple, it’s possible for each to be satisfied by dif-
ferent cached copies.

Figure 3 shows a more difficult problem. Since the model
replicates tuples on different devices as much as possible to
improve data resilience, it is possible for different copies of
the same tuple to satisfy separate destructive requests. In
this case, it is not sufficient for the holder of a copy and
a requester to agree (unlike the scenarios above where no
cached copies exist), since this could happen simultaneously
throughout the network, against the general semantics of
the IN operator. In this case, an arbitrator (which should
have heard both requests) can act as the centralised point
that makes the decision of which request actually succeeds.
Upon hearing the arbitration, each requester knows whether
they succeeded or not, and the copy holders can both remove
the tuple from their caches.

The concept of an arbitrator allows the system to epidemi-

cally cache tuples on as many devices as desired, since the
arbitrator can act as the centralised point for enforcing se-
mantics. This is, of course, a bottleneck on the system. With
a sufficiently intelligent algorithm however, it should be pos-
sible to have different arbitrators for different sets of tuples,
decided on the basis of a tuple hash, for example. Another
problem arises when the arbitrator fails or loses connectiv-
ity. The model is able to recover from this situation by hav-
ing another device take over the role after a period when
the arbitrator does not seem to have replied. Since all de-
vices should hear all (or most) messages, this is relatively
straightforward.

3.3 Protocol
The “Resilient, Unified Shared Spaces In Ad hoc Networks
(RUSSIAN)” protocol is an unreliable, multicast datagram
protocol for distributing tuples over multiple devices. We
provide here a general overview of the protocol and an in-
formal description of its operation. As outlined above, it
is assumed that all devices participating are generally within
broadcast range of one another and can thus potentially over-
hear all messages.

3.3.1 Initiating an operation
An OUT operation can either result in no network access
or the broadcast of the entire tuple. It is not important to
the algorithm which choice is made by a particular device,
since IN and READ requests are usually broadcast anyway
(see below). An advantage of broadcasting the tuple is that
all devices that hear the broadcast can cache it to satisfy fu-
ture requests. In many cases however, this would waste re-
sources. The decision to broadcast or not is influenced by
the context engine (see section 3.4).

When a device wants to perform an IN operation, it should
broadcast a request and wait for a timeout, or a reply fol-
lowed by an arbitration message. Any device holding a match-
ing tuple can reply, though if no replies are heard and/or no
arbitration message is heard, the operation fails after a time-
out. If the arbitration permits usage of the tuple, it is passed
back to the application, otherwise the IN operation waits for
other possibilities or times out.

When a device wants to READ a tuple, it should first check
its own caches. If no match is found, a request should be
broadcast and the device should wait for a timeout or a re-
ply. Any device that has a matching tuple can reply. No
arbitration is generally required for a READ, as there are no
contention issues over who should receive the tuple as with
IN.

3.3.2 Listening to broadcasts
When a device hears a full tuple being broadcast as an OUT
operation or a reply to a READ or IN operation, it can choose
to cache it or not according to the policy on the device. If the
tuple has been broadcast in response to an IN, it should only
be cached if the IN is known to subsequently fail (accord-
ing to an arbitration message). If a device caches a tuple, it
should verify if any pending READs or INs it has overheard
can be satisfied.

When a device hears a READ or an IN operation, it should



check its caches for possible matches. If one is found, it
should wait a small random time before broadcasting it. If
while waiting it hears another device replying, it should can-
cel its reply and ignore the request. The amount of time
before replying can be tuned according to the context en-
gine (see section 3.4). Devices should probabilistically re-
ply more quickly when they themselves have OUTed the
matching tuple and reply more slowly when replying with
a cached tuple. In this way, fewer messages are likely to
be sent overall, since most requests will be satisfied by just
a single device. If the producer of the original tuple is no
longer available however, the request can still be satisfied by
a cached copy.

When a device overhears an arbitration message intended
for another device, it should remove any cached copies of
the now consumed tuple so they are not reused in future op-
erations.

3.3.3 Handling cache inconsistencies
There will be times when a device loses contact and does
not hear that a cached tuple has been withdrawn. When it
reconnects it will respond to requests with that invalid tuple.
This can be mitigated with a “withdrawn list” maintained
by all devices. If a device offers up a cached copy that is
known by other devices to have been withdrawn, they can
broadcast a veto. The arbitrator can use this veto to deny
the request, and all devices that hear the veto can update
their caches. However, this would imply the arbitrator would
always need to wait for vetoes when handling an arbitration,
which is highly inefficient. To prevent this, replies to IN
operations could be marked as “certain” if they were created
by the device that is replying as opposed to being a cached
copy. The arbitrator can be certain in these cases that the
tuple is current and immediately broadcast the arbitration. It
is only when no certain replies have been offered that the
arbitrator must consider waiting for vetoes. Lists of recently
withdrawn tuples could be piggybacked onto other broadcast
messages to improve cache consistency without additional
messages.

3.4 Dynamic adaptation
The RUSSIAN protocol outlined above has several tunable
parameters that can greatly affect the efficiency of the system
as a whole and the resilience of the data stored in the tuple
spaces:

• Whether an OUT operation should do nothing or broad-
cast the entire tuple. Obviously broadcasting a tuple is
prohibitively expensive if no other devices are likely to
be interested, but it also means tuples will probably sur-
vive the failure of the device.

• How long a device should wait before broadcasting replies
to IN and READ operations. Although a device should
generally prefer broadcasting tuples it created to those it
has cached from other devices, it may become clear over
time that it is holding the only copies of tuples from a
failed device and should broadcast them as if it had cre-
ated them, for example.

• Whether (and which) overheard tuples should be cached.
OUT operations and replies to IN and READ operations

will include full copies of tuples that can be cached to
satisfy future requests but whether or not these should be
cached can be determined by such variables as remaining
storage space and metadata attached to the tuple which
may indicate how long the tuple is expected to be needed
or how important it is.

These parameters may be dynamically tuned by a context en-
gine that aggregates several sources of contextual informa-
tion including device characteristics, application usage pat-
terns, apparent device appearance and disappearance (deter-
mined by monitoring messages from devices), and perceived
stability within the network. Internal modeling of the over-
all system state would be a useful tool for determining how
the tuning should proceed, and since all messages in the sys-
tem are available to each device, quite sophisticated models
should be possible. Clearly, smaller devices without storage
capabilities or slow processors will be less able to perform
this modeling and appropriate defaults can be preset.

Furthermore, it is not necessary for each device to base its
model purely on the messages overheard in the system; ad-
ditional contextual information generated by devices could
be supplied to others in a sub-protocol piggybacked onto the
RUSSIAN protocol, which they could use to update their
own model. The system model would also help a device
determine whether it is an appropriate choice for arbitrator
should an existing arbitrator fail.

4. RELATED WORK
Limbo [11] is an initial attempt to use the tuple space metaphor
in a mobile computing environment. It is argued that the
spatial and temporal decoupling of processes in Linda maps
well to the nature of mobile networks but concludes that tu-
ple spaces generally do not lend themselves well to measur-
ing network quality of service (precisely because they are
connectionless). Limbo uses a multicast protocol to dis-
tribute tuples over multiple devices, but uses the concept of
ownership of tuples (and transferral of that ownership) to en-
force the semantics of the Linda IN operator. This approach
means that the owner of a tuple must be connected to the
network whereas in the RUSSIAN protocol, which uses tu-
ple replication and has no concept of ownership, any device
that has a cached copy is free to return the tuple.

LIME [9] is another implementation of Linda in a mobile
environment that modifies the notion of a tuple space consid-
erably and supports both physical (through the environment)
and logical mobility of agents (from host to host). Instead
of a single, unified tuple space, spaces are partitioned and
merged. Each agent has its own tuple space which is merged
with those of other agents residing on the same host. When
hosts come within range of one another, their tuple spaces
are automatically merged and separated when they move out
of range. A useful mechanism is also provided for trigger-
ing reactions when a tuple matching a subscription template
is inserted into the tuple space. As with Limbo, LIME uses a
concept of ownership of tuples to maintain Linda semantics.

Limone’s [3] approach is to have each device maintain an
acquaintance list which enumerates nearby available peers
with which it can communicate. This list, which is man-



ageable from the application level, is continually updated by
each device transmitting beacon signals. Instead of a unified,
shared space, each agent maintains and uses its own space.
When it wishes to receive data from a peer, it requests it
to perform a tuple space operation on its own space and re-
turn the results. This approach is quite different from the
original Linda tuple space metaphor, removing some of the
anonymity and temporal decoupling in that design. How-
ever, it makes possible more predictable and semantically
rigid communication between application components. The
RUSSIAN protocol has deliberately moved in the opposite
direction, opting instead to try and maintain the unification
of the tuple space above the enforcement of strict Linda se-
mantics. Our system also foregoes expensive beaconing.
Since each request is potentially satisfiable by any host there
is no particular advantage in knowing which hosts are cur-
rently nearby.

There have also been fault-tolerant techniques to handle host
failure in more conventional distributed Linda systems. Some
systems have used the notion of transactions to ensure that
when failures occur the applications are able to rollback ac-
tions and continue. Though somewhat heavyweight, this ap-
proach is quite popular in some tuple space systems such as
JavaSpaces [6]. Transactions are seen to be too expensive for
our system as our goal is to make it extremely light-weight
for resource-constrained devices. An alternative approach to
transactions is the idea ofagent wills[10]. It is argued that
transactions are too expensive in many situations and that
a mechanism allowing a host to clean up an operation if it
fails during its execution is sufficient. This concept how-
ever, relies on the ability to migrate an atomic unit of code
for execution on a remote host and is inappropriate in het-
erogeneous systems.

5. FUTURE WORK AND CONCLUSION
Our research aims to provide a very light-weight middleware
system for distributing applications in wireless ad hoc net-
works. Recognising that the style of application we wish to
deploy does not usually require strict operational guarantees,
we do not attempt to enforce strict semantics, instead offer-
ing “best effort” mechanisms for use by the applications. By
tuning various protocol parameters, the system attempts to
continually adapt these mechanisms as the contextual envi-
ronment of the system changes.

It remains to be seen whether the RUSSIAN protocol is re-
silient enough to provide a useful service to distributed ap-
plications in wireless ad hoc networks. As such, we intend
to implement the protocol and test it in a wide variety of
simulated networks, especially in cases where network qual-
ity is very poor and devices move in and out of range at a
rapid pace. In addition to low-level simulations, it would be
illuminating to implement real applications for qualitative
testing.

The model so far provides only the most fundamental op-
erators necessary for a tuple space system, namely OUT,
IN and READ. It has been argued that mobile computing
platforms would benefit from the notion of events triggered
by the insertion of data [9, 2], much like typical publish-
subscribe middleware systems. Incorporating events into the

RUSSIAN protocol may not be especially difficult, since it
can be seen as a special case of a READ operation, though
it would certainly require extra effort to maintain any useful
semantics for such a feature.

ACKNOWLEDGMENTS
The authors would like to acknowledge the ongoing sup-
port of the Smart Internet Technology CRC and NICTA, and
Darrall Cutting for his proofreading advice.

REFERENCES
[1] R. Alvez and S. Yovine. Distributed implementation of

a linda kernel. InProceedings of XVII Conf.
Latinoamericana de Informatica, 1991.

[2] G. Cugola and E. D. Nitto. Using a publish/subscribe
middleware to support mobile computing. In
Proceedings of the Workshop on Middleware for
Mobile Computing, in association with IFIP/ACM
Middleware 2001 Conference, Heidelberg, Germany,
November 2001.

[3] C.-L. Fok and G.-C. Roman. A lightweight
coordination model and middleware for mobile
computing.

[4] D. Gelernter. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80–112, 1985.

[5] D. Gelernter. Multiple tuple spaces in Linda. In
E. Odijk, M. Rem, and J.-C. Syre, editors,Parallel
Architectures and Languages Europe (PARLE ’89),
pages 20–27, Eindhoven, The Netherlands, 1989.
Springer-Verlag.

[6] JavaSpaces(TM) service specification. Online.
http://java.sun.com/products/jini/2.0/doc/specs/html/
jsTOC.html.

[7] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek.
Mobile computing with the Rover Toolkit.IEEE
Transactions on Computers, 46(3):337–352, 1997.

[8] C. Mascolo, L. Capra, S. Zachariadis, and
W. Emmerich. XMIDDLE: A data-sharing
middleware for mobile computing.Wirel. Pers.
Commun., 21(1):77–103, 2002.

[9] A. L. Murphy, G. P. Picco, and G.-C. Roman. LIME:
A coordination middleware supporting mobility of
hosts and agents. Technical Report WUCSE-03-21,
Washington University, April 2003.

[10] A. Rowstron. Mobile co-ordination: Providing fault
tolerance in tuple space based co-ordination
languages.

[11] S. P. Wade.An Investigation into the use of the Tuple
Space Paradigm in Mobile Computing Environments.
PhD thesis, Lancaster University, 1999.


